【AAAI2021】对话推理:上下文阅读理解提升回复生成

2021 年 1 月 23 日 专知

在多轮对话中,人们不总是会使用完整精确的句子表达方式,因而使得对话的上下文理解变得尤为困难。可是,我们需要让计算机充分理解上下文,才能产生一个合理的系统回答。在本文中,我们提出了一种训练计算机系统通过完成阅读理解的任务,提升其对会话上下文出现信息缺失情况下的理解推理能力:即使出现了信息缺失,系统也有能力进行理解及补全。受多任务学习范式的启发,我们提出了一种联合训练的模型框架,将对话与阅读理解两个不同的任务进行捏合与适度的共享,从而使得这种在信息缺失情况下的推理能力可以很好的帮助对话系统完成会话过程。


https://www.zhuanzhi.ai/paper/4796c9faac3b36e1c30a21eed28ebe9e


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DRC” 可以获取【AAAI2021】对话推理:上下文阅读理解提升回复生成专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

【CVPR2021】基于反事实推断的视觉问答框架
专知会员服务
26+阅读 · 2021年3月4日
【WWW2021】合作记忆网络的个性化任务导向对话系统
专知会员服务
14+阅读 · 2021年2月17日
【Coling-2020】面向机器阅读理解的双向认知思维网络
专知会员服务
9+阅读 · 2021年2月12日
【AAAI2021】预训练用户表示提升推荐
专知会员服务
43+阅读 · 2021年2月8日
【AAAI2021】生成式Transformer的对比三元组提取
专知会员服务
49+阅读 · 2021年2月7日
【AAAI2021】知识图谱增强的预训练模型的生成式常识推理
【AAAI2021】低资源医疗对话生成的图演化元学习
专知会员服务
47+阅读 · 2020年12月26日
【EMNLP2020-清华】基于常识知识图谱的多跳推理语言生成
专知会员服务
73+阅读 · 2020年9月25日
【IJCAI2020南大】上下文在神经机器翻译中的充分利用
专知会员服务
15+阅读 · 2020年8月17日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
【ICML2020】对比多视角表示学习
专知
19+阅读 · 2020年6月28日
注意力图神经网络的多标签文本分类
专知
8+阅读 · 2020年3月28日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2019年3月1日
VIP会员
相关VIP内容
【CVPR2021】基于反事实推断的视觉问答框架
专知会员服务
26+阅读 · 2021年3月4日
【WWW2021】合作记忆网络的个性化任务导向对话系统
专知会员服务
14+阅读 · 2021年2月17日
【Coling-2020】面向机器阅读理解的双向认知思维网络
专知会员服务
9+阅读 · 2021年2月12日
【AAAI2021】预训练用户表示提升推荐
专知会员服务
43+阅读 · 2021年2月8日
【AAAI2021】生成式Transformer的对比三元组提取
专知会员服务
49+阅读 · 2021年2月7日
【AAAI2021】知识图谱增强的预训练模型的生成式常识推理
【AAAI2021】低资源医疗对话生成的图演化元学习
专知会员服务
47+阅读 · 2020年12月26日
【EMNLP2020-清华】基于常识知识图谱的多跳推理语言生成
专知会员服务
73+阅读 · 2020年9月25日
【IJCAI2020南大】上下文在神经机器翻译中的充分利用
专知会员服务
15+阅读 · 2020年8月17日
Top
微信扫码咨询专知VIP会员