图像分割二十年,Mask R-CNN 影响力仅排第十?

2020 年 9 月 30 日 AI科技评论

图像分割(image segmentation)技术是计算机视觉领域的重要研究方向,近些年,图像分割技术迅猛发展,在多个视觉研究领域都有着广泛的应用。本文盘点了近20年来影响力最大的 10 篇论文。

注:这里的影响力以Web of Science上显示的论文的引用量排序,截止时间为2020年9月27日。


-TOP10-

Mask R-CNN 

被引频次:1839

作者:Kaiming He,Georgia Gkioxari,Piotr Dollar,Ross Girshick.
发布信息: 2017,16th IEEE International Conference on Computer Vision (ICCV)
论文:https://arxiv.org/abs/1703.06870
代码:https://github.com/facebookresearch/Detectron

Mask R-CNN作为非常经典的实例分割(Instance segmentation)算法,在图像分割领域可谓“家喻户晓”。Mask R-CNN不仅在实例分割任务中表现优异,还是一个非常灵活的框架,可以通过增加不同的分支完成目标分类、目标检测、语义分割、实例分割、人体姿势识别等多种不同的任务。

-TOP9-

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

被引频次:1937

作者: Vijay Badrinarayanan,Alex Kendall,Roberto Cipolla
发布信息:2015,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
论文:https://arxiv.org/pdf/1511.00561.pdf
代码:https://github.com/aizawan/segnet

SegNet是用于进行像素级别图像分割的全卷积网络。SegNet与FCN的思路较为相似,区别则在于Encoder中Pooling和Decoder的Upsampling使用的技术。Decoder进行上采样的方式是Segnet的亮点之一,SegNet主要用于场景理解应用,需要在进行inference时考虑内存的占用及分割的准确率。同时,Segnet的训练参数较少,可以用SGD进行end-to-end训练。


-TOP8-

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

被引频次:2160

作者: Chen Liang-Chieh,Papandreou George,Kokkinos Iasonas等.
发布信息:2018,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

DeepLabv1:https://arxiv.org/pdf/1412.7062v3.pdf
DeepLabv2:https://arxiv.org/pdf/1606.00915.pdf
DeepLabv3:https://arxiv.org/pdf/1706.05587.pdf
DeepLabv3+:https://arxiv.org/pdf/1802.02611.pdf
代码:https://github.com/tensorflow/models/tree/master/research/deeplab

DeepLab系列采用了Dilated/Atrous Convolution的方式扩展感受野,获取更多的上下文信息,避免了DCNN中重复最大池化和下采样带来的分辨率下降问题。2018年,Chen等人发布Deeplabv3+,使用编码器-解码器架构。DeepLabv3+在2012年pascal VOC挑战赛中获得89.0%的mIoU分数。

DeepLabv3+


-TOP7-

Contour Detection and Hierarchical Image Segmentation

被引频次:2231

作者: Arbelaez Pablo,Maire Michael,Fowlkes Charless等.
发布信息:2011,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
论文和代码:https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

Contour Detection and Hierarchical Image Segmentation通过检测轮廓来进行分割,以解决不加交互的图像分割问题,是分割领域中非常重要的一篇文章,后续很多边缘检测算法都利用了该模型。


-TOP6-

Efficient graph-based image segmentation

被引频次:3302

作者:Felzenszwalb PF,Huttenlocher DP
发布信息:2004,INTERNATIONAL JOURNAL OF COMPUTER VISION
论文和代码:http://cs.brown.edu/people/pfelzens/segment/

Graph-Based Segmentation 是经典的图像分割算法,作者Felzenszwalb也是提出DPM算法的大牛。该算法是基于图的贪心聚类算法,实现简单。目前虽然直接用其做分割的较少,但许多算法都用它作为基石。


-TOP5-

SLIC Superpixels Compared to State-of-the-Art Superpixel Methods

被引频次:4168

作者: Radhakrishna Achanta,Appu Shaji,Kevin Smith,Aurelien Lucchi,Pascal Fua,Sabine Susstrunk.
发布信息:2012,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
论文和代码:https://ivrlwww.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html

SLIC 算法将K-means 算法用于超像素聚类,是一种思想简单、实现方便的算法,SLIC算法能生成紧凑、近似均匀的超像素,在运算速度,物体轮廓保持、超像素形状方面具有较高的综合评价,比较符合人们期望的分割效果。


-TOP4-

U-Net: Convolutional Networks for Biomedical Image Segmentation

被引频次:6920

作者: Ronneberger Olaf,Fischer Philipp,Brox Thomas
发布信息:2015,18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 
代码:https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

U-Net是一种基于深度学习的图像语义分割方法,在医学图像分割领域表现尤为优异。它基于FCNs做出改进,相较于FCN多尺度信息更加丰富,同时适合超大图像分割。作者采用数据增强(data augmentation),通过使用在粗糙的3*3点阵上的随机取代向量来生成平缓的变形,解决了可获得的训练数据很少的问题。并使用加权损失(weighted loss)以解决对于同一类的连接的目标分割。


-TOP3-

Mean shift: A robust approach toward feature space analysis

被引频次:6996

作者: Comaniciu D,Meer P
发布信息:2002,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Meanshift是基于像素聚类的代表方法之一,是一种特征空间分析方法。密度估计(Density Estimation) 和mode 搜索是Meanshift的两个核心点。对于图像数据,其分布无固定模式可循,所以密度估计必须用非参数估计,选用的是具有平滑效果的核密度估计(Kernel density estimation,KDE)。Meanshift 算法的稳定性、鲁棒性较好,有着广泛的应用。但是分割时所包含的语义信息较少,分割效果不够理想,无法有效地控制超像素的数量,且运行速度较慢,不适用于实时处理任务。

-TOP2-

Normalized cuts and image segmentation

被引频次:8056

作者:Shi JB,Malik J
发布信息:2000,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 论文:https://ieeexplore.ieee.org/abstract/document/1000236

NormalizedCut是基于图论的分割方法代表之一,与以往利用聚类的方法相比,更加专注于全局解的情况,并且根据图像的亮度,颜色,纹理进行划分。


-Top1-

Fully Convolutional Networks for Semantic Segmentation

被引频次:8170

作者: Long Jonathan,Shelhamer Evan,Darrell Trevor
发布信息:2015,IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
代码:https://github.com/shelhamer/fcn.berkeleyvision.org

FCN是图像分割领域里程碑式论文。作为语义分割的开山之作,FCN是当之无愧的TOP1。它提出了全卷积网络(FCN)的概念,针对语义分割训练了一个端到端,点对点的网络,它包含了三个CNN核心思想:

(1)不含全连接层(fc)的全卷积(fully conv)网络。可适应任意尺寸输入。
(2)增大数据尺寸的反卷积(deconv)层。能够输出精细的结果。
(3)结合不同深度层结果的跳级(skip)结构。同时确保鲁棒性和精确性。

登录查看更多
1

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
专知会员服务
82+阅读 · 2020年9月27日
深度学习目标检测方法综述
专知会员服务
274+阅读 · 2020年8月1日
专知会员服务
159+阅读 · 2020年7月26日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
271+阅读 · 2020年1月1日
密歇根大学《20年目标检测综述》
专知会员服务
98+阅读 · 2019年10月13日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
【文献综述】图像分割综述,224篇参考文献,附58页PDF
专知会员服务
120+阅读 · 2019年6月16日
完美替代Mask RCNN!BlendMask:实例分割新标杆
新智元
3+阅读 · 2020年1月5日
资源丨用PyTorch实现Mask R-CNN
量子位
6+阅读 · 2018年7月23日
一文读懂目标检测模型(附论文资源)
数据派THU
8+阅读 · 2018年5月27日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
目标检测技术之Faster R-CNN详解
论智
13+阅读 · 2018年1月25日
从R-CNN到Mask R-CNN!
全球人工智能
17+阅读 · 2017年11月13日
从R-CNN到Mask R-CNN
机器学习研究会
25+阅读 · 2017年11月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关VIP内容
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
专知会员服务
82+阅读 · 2020年9月27日
深度学习目标检测方法综述
专知会员服务
274+阅读 · 2020年8月1日
专知会员服务
159+阅读 · 2020年7月26日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
271+阅读 · 2020年1月1日
密歇根大学《20年目标检测综述》
专知会员服务
98+阅读 · 2019年10月13日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
【文献综述】图像分割综述,224篇参考文献,附58页PDF
专知会员服务
120+阅读 · 2019年6月16日
相关资讯
完美替代Mask RCNN!BlendMask:实例分割新标杆
新智元
3+阅读 · 2020年1月5日
资源丨用PyTorch实现Mask R-CNN
量子位
6+阅读 · 2018年7月23日
一文读懂目标检测模型(附论文资源)
数据派THU
8+阅读 · 2018年5月27日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
目标检测技术之Faster R-CNN详解
论智
13+阅读 · 2018年1月25日
从R-CNN到Mask R-CNN!
全球人工智能
17+阅读 · 2017年11月13日
从R-CNN到Mask R-CNN
机器学习研究会
25+阅读 · 2017年11月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
7+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员