从零开始一起学习SLAM | 三维空间刚体的旋转

2018 年 10 月 14 日 计算机视觉life

   点击上方蓝字关注我,置顶更快接收消息!


刚体,顾名思义,是指本身不会在运动过程中产生形变的物体,如相机的运动就是刚体运动,运动过程中同一个向量的长度和夹角都不会发生变化。刚体变换也称为欧式变换。


视觉SLAM中使用的相机就是典型的刚体,相机一般通过人手持、机载(安装在机器人上)、车载(固定在车辆上)等方式在三维空间内运动,形式包括旋转、平移、缩放、切变等。其中,刚体在三维空间中最重要的运动形式就是旋转。那么刚体的旋转如何量化表达呢?


三维空间中刚体的旋转表示

三维空间中刚体的旋转总共有4种表示方法,高翔的十四讲中的第3讲比较详细的讲解了。本文提炼中最重要的内容,并加上实际使用过程中的经验总结进行了归纳。下面按照重要顺序分别进行介绍。


1

旋转矩阵

1、SLAM编程中使用比较频繁。需要重点掌握。


2、旋转矩阵不是一般矩阵,它有比较强的约束条件。旋转矩阵R具有正交性,R和R的转置的乘积是单位阵,且行列式值为1


3、旋转矩阵R的逆矩阵表示了一个和R相反的旋转。


4、旋转矩阵R通常和平移向量t一起组成齐次的变换矩阵T,描述了欧氏坐标变换。引入齐次坐标是为了可以方便的描述连续的欧氏变换,这个在上一篇文章《从零开始一起学习SLAM | 为什么要用齐次坐标?》中有讲解。


5、冗余。用9个元素表示3个自由度的旋转,比较冗余。


2

四元数

1、SLAM编程中使用频繁程度接近旋转矩阵。稍微有点抽象,不太直观,但是一定得掌握。


2、四元数由一个实部和三个虚部组成,是一种非常紧凑、没有奇异的表达方式。


3、编程时候很多坑,必须注意。首先,一定要注意四元素定义中实部虚部和打印系数的顺序不同,很容易出错!


其次,单位四元素才能描述旋转,所以四元素使用前必须归一化:q.normalize()。


3

旋转向量

1、用一个旋转轴n和旋转角θ来描述一个旋转,所以也称轴角。不过很明显,因为旋转角度有一定的周期性(360°一圈),所以这种表达方式具有奇异性。


2、从旋转向量到旋转矩阵的转换过程称为 罗德里格斯公式。这个推导比较麻烦,否则也不会有一个专属的名字了。OpenCV和MATLAB中都有专门的罗德里格斯函数。


3、旋转向量本身没什么出彩的,不过旋转向量和旋转矩阵的转换关系,其实对应于李代数和李群的映射,这对于后面理解李代数很有帮助。


4

欧拉角

1、把一次旋转分解成3次绕不同坐标轴的旋转,比如航空领域经常使用的“偏航-俯仰-滚转”(yaw,pitch,roll)就是一种欧拉角。该表达方式最大的优势就是直观。


2、欧拉角在SLAM中用的很少,原因是它的一个致命缺点:万向锁。也就是在俯仰角为±90°时,第一次和第3次旋转使用的是同一个坐标轴,会丢失一个自由度,引起奇异性。事实上,想要表达三维旋转,至少需要4个变量。


了解了四种旋转的表达方式,那么编程时如何使用呢?


矩阵线性代数运算库Eigen

事实上,上述几种旋转的表达方式在一个第三方库Eigen中已经定义好啦。Eigen是一个C++开源线性代数库,安装非常方便,Ubuntu下一行代码即可搞定:

sudo apt-get install libeigen3-dev


Eigen在SLAM编程中是必备基础,必须熟练编程。关于Eigen,主要有以下几点需要强调或注意。


1、Eigen库不同于一般的库,它只有头文件没有.so和 .a那样的二进制库文件,所以在CMakeLists.txt里只需要添加头文件路径,并不需要使用 target_link_libraries 将程序链接到库上。


2、Eigen以矩阵为基本数据单元,在Eigen中,所有的矩阵和向量都是Matrix模板类的对象,Matrix一般使用3个参数:数据类型、行数、列数


Eigen::Matrix<typename Scalar, int rowsNum, int colsNum>


而向量只是一种特殊的矩阵(一行或者一列)。同时,Eigen通过typedef 预先定义好了很多内置类型,如下,我们可以看到底层仍然是Eigen::Matrix


typedef Eigen::Matrix<float, 4, 4> Matrix4f;

typedef Eigen::Matrix<float, 3, 1> Vector3f;


3、为了提高效率,对于已知大小的矩阵,使用时需要指定矩阵的大小和类型。如果不确定矩阵的大小,可以使用动态矩阵Eigen::Dynamic

Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> matrix_dynamic;


4、Eigen在数据类型方面“很傻很天真”。什么意思呢?就是使用Eigen时操作数据类型必须完全一致,不能进行自动类型提升。比如C++中,float类型加上double类型变量不会报错,编译器会自动将结果提升为double。但是在Eigen中float类型矩阵和double类型矩阵不能直接相加,必须统一为float或者double,否则会报错。


5、Eigen除了空间几何变换外,还提供了大量矩阵分解、稀疏线性方程求解等函数,非常方便。学习Eigen最好的方式就是官网:

http://eigen.tuxfamily.org/dox/

有非常多的示例参考。


上述四种旋转表达方式是可以相互转化的。在Eigen中它们之间的转化非常的方便。下图是我看的别人总结的旋转矩阵、四元素、旋转向量之间的相互转化图:


作业

题目1:

已知旋转矩阵定义是沿着Z轴旋转45°。请按照该定义初始化旋转向量、旋转矩阵、四元数、欧拉角。请编程实现:


1、以上四种表达方式的相互转换关系并输出,并参考给出的结果验证是否正确。

2、假设平移向量为(1,2,3),请输出旋转矩阵和该平移矩阵构成的欧式变换矩阵,并根据欧式变换矩阵提取旋转向量及平移向量。


本程序学习目标:

1、学习eigen中刚体旋转的四种表达方式,熟悉他们之间的相互转换关系

2、熟悉旋转平移和欧式变换矩阵的相互转换关系


以下是参考的编程框架:


题目2:

我们知道单位四元数q可以表达旋转。一个三维空间点可以用虚四元数p表示,用四元数 q 旋转点 p 的结果p'为:

证明:此时 p′ 必定为虚四元数(实部为零)。


公众号菜单栏回复:“旋转”,即可下载题目1代码框架和输出参考结果。


欢迎留言讨论,更多学习视频、文档资料作业参考答案等扫描下方二维码进入知识星球「从零开始学习SLAM」和其他学习SLAM学的伙伴一起学习交流~

相关阅读

从零开始一起学习SLAM | 为什么要学SLAM?

从零开始一起学习SLAM | 学习SLAM到底需要学什么?

从零开始一起学习SLAM | SLAM有什么用?

 从零开始一起学习SLAM | C++新特性要不要学?

从零开始一起学习SLAM | 为什么要用齐次坐标?

零基础小白,如何入门计算机视觉?

登录查看更多
4

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
109+阅读 · 2020年6月5日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
 第八届中国科技大学《计算机图形学》暑期课程课件
专知会员服务
55+阅读 · 2020年3月4日
专知会员服务
41+阅读 · 2020年2月20日
专知会员服务
86+阅读 · 2019年12月13日
【电子书】C++ Primer Plus 第6版,附PDF
专知会员服务
87+阅读 · 2019年11月25日
综述 | SLAM回环检测方法
计算机视觉life
15+阅读 · 2019年8月19日
经验分享 | SLAM、3D vision笔试面试问题
计算机视觉life
24+阅读 · 2019年5月1日
从零开始一起学习SLAM | 掌握g2o边的代码套路
计算机视觉life
5+阅读 · 2019年3月6日
从零开始一起学习SLAM | 点云到网格的进化
计算机视觉life
13+阅读 · 2019年1月9日
从零开始一起学习SLAM | 点云平滑法线估计
计算机视觉life
4+阅读 · 2018年12月28日
从零开始一起学习SLAM | 给点云加个滤网
计算机视觉life
6+阅读 · 2018年12月18日
从零开始一起学习SLAM | 你好,点云
计算机视觉life
9+阅读 · 2018年11月26日
从零开始一起学习SLAM | 神奇的单应矩阵
计算机视觉life
9+阅读 · 2018年11月11日
从零开始一起学习SLAM | SLAM有什么用?
计算机视觉life
18+阅读 · 2018年9月17日
从零开始一起学习SLAM | 学习SLAM到底需要学什么?
计算机视觉life
8+阅读 · 2018年9月9日
Real-time Scalable Dense Surfel Mapping
Arxiv
5+阅读 · 2019年9月10日
Two Stream 3D Semantic Scene Completion
Arxiv
4+阅读 · 2018年7月16日
Arxiv
4+阅读 · 2018年1月29日
VIP会员
相关VIP内容
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
109+阅读 · 2020年6月5日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
 第八届中国科技大学《计算机图形学》暑期课程课件
专知会员服务
55+阅读 · 2020年3月4日
专知会员服务
41+阅读 · 2020年2月20日
专知会员服务
86+阅读 · 2019年12月13日
【电子书】C++ Primer Plus 第6版,附PDF
专知会员服务
87+阅读 · 2019年11月25日
相关资讯
综述 | SLAM回环检测方法
计算机视觉life
15+阅读 · 2019年8月19日
经验分享 | SLAM、3D vision笔试面试问题
计算机视觉life
24+阅读 · 2019年5月1日
从零开始一起学习SLAM | 掌握g2o边的代码套路
计算机视觉life
5+阅读 · 2019年3月6日
从零开始一起学习SLAM | 点云到网格的进化
计算机视觉life
13+阅读 · 2019年1月9日
从零开始一起学习SLAM | 点云平滑法线估计
计算机视觉life
4+阅读 · 2018年12月28日
从零开始一起学习SLAM | 给点云加个滤网
计算机视觉life
6+阅读 · 2018年12月18日
从零开始一起学习SLAM | 你好,点云
计算机视觉life
9+阅读 · 2018年11月26日
从零开始一起学习SLAM | 神奇的单应矩阵
计算机视觉life
9+阅读 · 2018年11月11日
从零开始一起学习SLAM | SLAM有什么用?
计算机视觉life
18+阅读 · 2018年9月17日
从零开始一起学习SLAM | 学习SLAM到底需要学什么?
计算机视觉life
8+阅读 · 2018年9月9日
Top
微信扫码咨询专知VIP会员