Github 项目推荐 | TensorFlow 概率推理工具集 —— probability

2018 年 2 月 23 日 AI研习社 孔令双

Probability 是 TensorFlow 的概率推理工具集,它是集建模工具、推理算法、一些有用的模型和一般统计计算于一身的开发工具集合。利用 TensorFlow,Probability 可以将概率方法和深度网络、通过自动差分的基于梯度的推论、大数据集、通过硬件(比如 GPU)加速的模型和分布式计算结合起来。

该软件的主要内容包括以下几个部分:

  • 采样算法,例如,tfp.metropolis_hastings,tfp.hmc,tfp.monte_carlo。

  • 示例模型(tfp.examples):使用此包和tf.contrib.distributions中的工具在TensorFlow中实现常见概率模型。

该库中的接口可能随时会更改。

Github 地址:

https://github.com/tensorflow/probability

安装

安装 Probability 最简单的方法是用 pip:

pip install --upgrade tensorflow-probability       # for Python 2.7
pip3 install --upgrade tensorflow-probability      # for Python 3.n
pip install --upgrade tensorflow-probability-gpu   # for Python 2.7 and GPU
pip3 install --upgrade tensorflow-probability-gpu  # for Python 3.n and GPU

TensorFlow Probability 目前不包含任何指定 GPU(GPU-specific)的代码。这些软件包之间的主要区别在于 tensorflow-probability-gpu 取决于启用 GPU 的 TensorFlow 版本。

开发者也可以从源代码安装, 这需要 Bazel(https://bazel.build/)构建系统。

git clone https://github.com/tensorflow/probability.git
cd probability
bazel build --config=opt :pip_pkg
./bazel-bin/pip_pkg /tmp/tensorflow_probability_pkg
pip install /tmp/tensorflow_probability_pkg/*.whl

示例:

通过示例来学习是最容易的, examples / 目录包含常见概率模型的参考实现,并演示了在 TensorFlow 中构建概率模型的惯用方法。开发者可以直接用命令行运行示例:

python -m tensorflow_probability.examples.weight_uncertainty.mnist_deep_nn

训练贝叶斯深度网络对MNIST数字进行分类,请参阅示例目录:

https://github.com/tensorflow/probability/tree/master/examples/

用法:

安装 tensorflow_probability 后,可通过以下方式访问函数:

import tensorflow_probability as tfp

春节 AI 学习狂欢,精品课程 豪华特辑

优惠折上折,福利抢不停!


进入阅读原文获取更多福利

▼▼▼   

登录查看更多
3

相关内容

【干货书】用于概率、统计和机器学习的Python,288页pdf
专知会员服务
287+阅读 · 2020年6月3日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
干货书《数据科学数学系基础》2020最新版,266页pdf
专知会员服务
318+阅读 · 2020年3月23日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
【干货】谷歌Joshua Gordon 《TensorFlow 2.0讲解》,63页PPT
专知会员服务
27+阅读 · 2019年11月2日
【初学者系列】tensorboard学习笔记
专知
7+阅读 · 2019年10月4日
Github项目推荐 | Pytorch TVM 扩展
AI研习社
11+阅读 · 2019年5月5日
Github 项目推荐 | 开源演绎推理工具 —— therefore
Github 项目推荐 | 用 TensorFlow 实现的模型集合
AI研习社
5+阅读 · 2018年2月14日
手写决策树
七月在线实验室
4+阅读 · 2017年9月20日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
4+阅读 · 2018年3月23日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员