生物物理所研制出分子尺度分辨率干涉定位显微镜

2019 年 9 月 11 日 中国生物技术网
  光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。 进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺2014年诺贝尔化学奖。
  9月9日,Nature Methods 杂志在线发表了中国科学院院士、中国科学院生物物理研究所研究员徐涛研究组与科学研究平台正高级工程师纪伟研发团队合作的研究论文,题为Molecular resolution imaging by repetitive optical selective exposure,为超高分辨光学显微镜家族再添新成员,使显微镜分辨率进一步被突破。 该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。
  所谓干涉定位,是指采用不同方向和相位的激光干涉条纹激发荧光分子,荧光分子的发光强度与其所处条纹的相位有关,该技术即是通过荧光分子强度与干涉条纹的相位关系,来确定荧光分子的精确位置。 为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性的设计,分别为: 基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。
  研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平,可以解析5 nm的DNA origami阵列。 后续的细胞实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该技术将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。
  徐涛领衔的仪器研发团队近年来致力于显微成像仪器设备和技术方法的研究和开发,先后研制出偏振单分子干涉成像、冷冻单分子定位成像以及超分辨光电融合成像系统,开发了新的超分辨显微成像算法、探针和技术,申请了多项发明专利,上述成果被广泛应用于细胞生物学相关研究,支撑团队与合作者在该领域取得了系统性成果产出。
  徐涛和纪伟为该文章的共同通讯作者。 该工作受到中科院科研仪器设备研制项目、国家重点研发计划、国家自然科学基金以及北京市科技计划等的资助。
 
生物物理所研制出分子尺度分辨率干涉定位显微镜


中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。


注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn


本公众号由中国科学院微生物研究所信息中心承办

微信公众号:中国生物技术网

回复关键词热点”可阅读热点专题文章,包括“施一公”、“肠道菌群”、“肿瘤”、“免疫”和“健康”

近期热文

直接点击文字即可浏览!

1、补牙或将成为历史?

2、科学你慢慢学,中医我先治病去了

3、科学告诉你应该多久洗一次澡

4、新证据:喝咖啡能延长寿命!

5、据说,这是生物医学硕士博士生的真实的生活写照
6、一顿早餐到底有多重要?
7、情商也是把双刃剑!高情商或让你更脆弱
8、施一公:压死骆驼的最后一根稻草,是鼓励科学家创业!
9、“科学禁食法”真能降低重大疾病风险
10、睡眠科学家揭示出8种睡好觉的秘诀

11、有志者事竟成!2型糖尿病成功被逆转

12、每周两半小时,任何形式的锻炼都可以使你更长寿

13、喝醉以后,你以为睡一觉就没事儿了?!

14、仰卧起坐等或将成为延寿运动?

15、冥想、瑜伽、太极等不仅能够改善身心健康...


登录查看更多
1

相关内容

Origami 是一个来自 Facebook 设计团队的作品,是 Quartz Composer 的免费工具包,可在无需编程的情况下轻松实现与设计原型进行交互。
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
2019中国硬科技发展白皮书 193页
专知会员服务
81+阅读 · 2019年12月13日
浅谈群体智能——新一代AI的重要方向
中国科学院自动化研究所
43+阅读 · 2019年10月16日
同质结中的“超注入”现象:半导体光源迎来新机遇!
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
150个摄影测量与遥感术语
无人机
6+阅读 · 2018年4月22日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月22日
Arxiv
4+阅读 · 2018年1月19日
VIP会员
相关论文
Top
微信扫码咨询专知VIP会员