如何在会话式阅读理解里面能够建模它的implicative reasoning,即如何去学习会话与阅读理解篇章之间的蕴含关系。在这篇文章中,讲者概述了两种常见阅读理解的类型:第一种是标准的阅读理解,该模式是指,给定一篇描述型的文章和一个基于事实型的问题,通过匹配文章和问题,从文章中抽取一个span来回答这个问题;第二种是会话式的问答,与标准的单轮问答不同,需要追问新问题,即follow up question,同时问题是以交互的形式出现。会话式问答,存在两个挑战,一个是需要能理解篇章,另一个是能够理解交互的会话本身。基于会话式问答,讲者引入一个例子简单说明(图1)。比如,用户简单描述了自己的情况(Scenario),但用户的问题并不能直接从文章(Rule Text)中获取,往往这个文章可能是一个比较通用的、相当于是一个法规或者法律的篇章。比如,说明能够申请7a贷款的人,需要具备什么样的条件,但针对用户问题在文章中没有直接的答案,必须和用户进行一个交互,才能得到明确的回答。例子中,成功申请贷款的条件有三个,所以还需再问另外的条件。比如,能不能够在别的地方获取它的资金来源,假如用户说no的话,这时候就可以给他一个答案,也就是说你可以申请。因此,在这种情形下,就需要既能够读懂这篇文章,理解文章中的规则,也要能够主动地和用户交互,从用户那边获取一些需要知道的信息,最终再给他一个决策。图1定义该项任务常用的数据集是ShARC (shaping answers with rules through conversation 的简称),数据集的设定是:给定Rule Text;用户描述自己的Scenario(Background);用户提出question;已有的问答(Dialog History)。整个过程可以概述为,由于用户给定的background往往不明确,机器需要进行几轮交互,然后从交互中获取一些跟规则有关的信息,然后告诉用户具体答案。整个任务有两个子任务:任务一,整合Rule Text,Scenario,Question以及通过几轮交互从用户获取的信息,作为模型输入,然后做出决策(Decision Making)。该决策包含四种类型:一种是根据现有的信息能够作出yes or no 的决策;或者有些情况下,用户的问题可能与给定Rule Text无关,或根据Rule Text并不能解决问题,则会出现unanswerable的答案;另一种情况是Rule Text中需要满足很多条件,但有些条件机器不确定是否满足,需要作出inquire的决策,主动从用户那里获取更多信息,直至几轮交互后能够作出yes or no的决策。任务二,如果生成的决策是inquire,则需要机器问一个follow-up question,该问题能根据Rule Text引导用户提供一些没有提供的信息,便于进一步的决策。图2 2