【NLP】周明:自然语言对话引擎

2017 年 10 月 19 日 产业智能官 微软研究院AI头条

“微软AI讲堂”是我们近期推出的一个系列活动。我们希望借助讲座、分享、讨论等多样化的形式,走进校园,传递知识,普及科学,为大家揭开人工智能的神秘面纱。


上周,微软AI讲堂的首站来到了清华大学。此次分享会聚焦人工智能领域的自然语言理解方向,清华大学计算机科学与技术系教授、党委书记孙茂松老师以及微软亚洲研究院副院长周明博士两位自然语言理解领域的顶级专家分别从不同的角度带来了他们的分享。


今天让我们先来听听微软亚洲研究院副院长周明博士的演讲——自然语言聊天、问答和对话。或许你能从中获得未来人机对话的新灵感!

 


演讲全文如下(文字内容略有精简):

 

今天非常高兴来到微软AI讲堂清华大学站。我们做理工科的同学很擅长纯粹的科技,其实科技和人文的结合更有意思,我希望在座的同学在参加编程之美大赛的时候,能够脑洞大开,想出一些奇思妙想的东西,超越前辈,做得更好。


今天我要介绍一下自然语言对话。其实微软小冰就是在模拟人跟电脑的对话。电脑接收文字、图像或者语音,识别其中的内容,然后给予适当的回复。有的回复很有意思,让人觉得好像电脑后面就坐着一个真实的人,但有的时候回复也差强人意,而这正是我们这次编程之美所期待的,希望大家一起加入到人机对话的创新过程中,把人机对话做的更好。


我们团队在微软做自然语言人机对话方面的研究,并提供了小冰的关键自然语言处理技术。下面我将介绍一下人机对话机理,希望对大家有所帮助。


人机对话有三个层次,一个是聊天,一个是问答,还有一个是对话,即面向某一特定任务的对话。比如,我要买东西时,一进门,售货员会打招呼说,“你好!”,我回复“你好”。接着她会问“你想看看什么?”,我说“我想买两包方便面”。她问“什么牌子的呢?这个三块钱一包,这个五块钱一包”,我说“那要三块钱一包的吧。”她说“那好,你用支付宝还是微信付款呢?”我说“微信”。她说“好,这就是你买的东西”。


可以注意到,在我们每天都会产生的这些对话中实际上包含了三个最基本的人类智力的活动。第一个,聊天。聊天一般没有太多实质性的内容,主要是拉近人与人之间的关系;第二个就是问答,比如“你买什么东西”,“这个方便面多少钱一包”,这是提问,它的目的是提供信息;第三个,面向特定意图的对话。比如售货员知道我的意图是买方便面,开始围绕这个意图跟我进行了有目的的对话。最终我完成支付行为,售货员把方便面放到我手上。这三个技能是我们在研究人机对话当中最重要的三个技能。


最近几年,深度神经网络逐渐取代了传统的统计机器学习,成为主流的研究方向。现在,自然语言技术已全部转向深度学习网络,我们的对话系统也都用到了深度学习网络,所以先向大家介绍一下深度学习网络。


深度学习网络一般有一个输入层,一个输出层,中间有N层是神经网络,他们之间通过一种连接方式以不同的权值来发挥作用,当输入时,根据神经网络的权值逐层推进,就会得到一个输出。



其实在训练的时候有很多样本,输入和输出是对应的。当输入到神经网络时,有的时候会发现结果不对,那么则可以根据它与答案之间的差距进行反向传播并修正参数。当网络趋势越来越好,那么到一定时候网络就可以收敛,进而网络就达到了一定的智能行为,这就是最简单的神经网络架构。


再来说一下常见的卷积神经网络的基本原理,我们以低密、低维的卷积神经网络为例。它实际上是从头开始,会以一个小的窗口进行滑动,每个窗口截取一定的信息,并抽取出来做卷积,这叫卷积的行为。而每次滑动都会得到一个值,最后得到一个卷积的结果。一般卷积之后还可以抽取最大值,这整个过程都体现了信息抽取的过程。



第二个比较常用的是二维的卷积,它是在矩阵里找一个小的窗口滑动,每个窗口通过卷积得到一个值,再通过填充所有窗口可以滑动的位置最后得到结果,这就是二维卷积的过程。



第三个叫循环神经网络(RNN,也叫递归神经网络),它描述的是一个序列串的过程。任何位置的输出都受限于前一位置或前一状态的位置信息,我们叫隐状态ht-1的信息,它和当前的输入字符串的信息一起会得到当前的隐形状态ht,然后根据这个当前的隐状态再预测每个词的输入概率。



循环神经网络训练完以后,任何句子都可以走这样的循环神经网络了,它的结果是由N个隐状态组成,而最后的隐状态,我们则可以认为它继承了前面所有句子、词的信息。


当然,每个位置也代表了到目前为止句子的信息,所以使用时,要么用最后一个结点,要么就把结点全用起来,形成一个向量来代表当前句子的编码。这样训练就比较简单了,一个句子进来走一遍刚才的这个过程,就可以得到每一位置词的输出概率,这些概率之乘就是这个循环神经网络的损失函数,然后根据损失函数,用反向传播去修正网络的连接强度,最后等网络稳定时就可以得到循环神经网络。



所以,只要有大规模的语料库,通过这种训练方法就会形成一个描述当前语料库每个句子的循环神经网络。


再来介绍一下刚才所说的三种对话的功能。第一个,聊天是怎么做的,这样的人机对话是怎样形成的?其实一般有两种办法。一种很简单,就是将网上的论坛、微博或是网站里出现过的对话句子抽取出来,当成训练语料库。当来了一个句子时,系统会从语料库里找到一个跟这个句子最相像的句子,而这个句子对应的答复就可以直接输出作为电脑的回复。虽然看起来这个方法简单粗暴,但有时候还是挺有效的。


然而有的时候,系统找到的句子可能对应了很多回复,它不知道哪个回复最适合当前的输入语句。所以这里就要有一个匹配的过程,就是怎么判断输入语句跟语料库里的回复在语义上是相关的或者是一致的。


这里就有了很多度量的方法,给大家介绍其中的两种。


第一种,如下图,q代表当前输入的语句,r代表目前的一个回复,想看q和r是否相关或者一致,要给它一个分数。如果有多个选择时,首先要把所有的东西排下去,输出最佳的分数,即实际上是对整个句子进行编码,对问题、回复进行编码。编码的方式可以用循环神经网络,也可以用卷积神经网络,也可以用最简单的就是每个维度取平均值,最后算一下这两个向量之间的距离。



第二个方法也比较简单,就是把问题和回答的每个词都算一个距离,这样就形成了一个相似度的矩阵,通过卷积得到矩阵变换的信息,然后再取最大池化层,矩阵的维度就越来越小,最后可能就做到一个结点上。这个可以有多种变换,那么最后就会有一组结点,所有的结点其实都代表了这两个字符串之间的距离,再通过多层感知就可以算出句子。


然而这些方法都有一个问题,就是短字符串匹配的时候太依赖于自己的信息了。而我们日常说话时往往是有背景、有常识的,我们说的每句话都有一个主题词表。比如我来到了清华三食堂,那这个背后的主题词可以说吃饭、早饭、中饭、晚饭、价钱、饭卡等,这些词都是跟它相关的主题词,匹配的时候要体现出这些主题词。


怎么体现呢?首先找出输入语句的N个主题词,然后再找出可以回复的那些句子的主题词,用主题词来增强匹配的过程。这也是通过神经网络来算两个词串,再加上主题词增义的相似度。


具体算法实际上是通过Attention model(注意力模型)计算每个主题词跟当前这句话的匹配强度,所有主题词根据强度不同进行加权以体现当前背景主题词的强度,然后再和原句匹配在一起,来算相似度。



另外,我们也可以把主题词当成所谓的Knowledge base(知识图谱),通过主题词限定当前的输入应该有哪些信息可以输出,哪些信息不要输出,哪些信息应该补足,哪些信息可以直接使用等等。实际上在具体实现时可以看到一个句子有三种表示方法,两个句子之间每个句子都有三种表示方法,用两两表示方法计算距离,最后就会得到一个矢量,再通过多层感知得到一个数值,来表征这两个输入串的距离。所以,这两个输入串不是赤裸裸地直接去匹配,而是用周围知识所代表的主题词来增强。



以上是基于搜索的一种回复方法,我们也可以用生成模型,其实生成模型走的也是神经网络的路线。输入一个句子,然后通过循环神经网络进行编码,再通过解码的过程输出每个词。当机器翻译的时候是跨语言的输出,由原文输出译文,而在古诗里是第一句生成第二句,在这里就是输入一个用户的问题得到一个系统的回复。


这就是一个生成的过程,可以看到图中下部是进行一个句子的编码,用这个编码指导每一个词的输出,在输出时既考虑原始句子的编码,也考虑前面的词输出什么样的词以及前面的隐状态是什么,最后传递输出,直到输出词尾。



实际上,输出时不能一而贯之所有的词都等价对待有的词权重比较高,这就由Attention model来体现输出某一类词时,哪个源端词对它的影响力最大,要体现在输出的概率方面。


用传统的RNN以及注意力模型就可以做问题输入,系统回复。但是它也有很多问题,比如它的回答太枯燥不丰富,那怎么办?


我们要用到外部知识来丰富回答我们可以用主题词增义。原始的句子可以用Attention model输出每个位置的词,然后再增强跟这个句子有关的主题词,把主题词编码,也做一种Attention model来预测输出。一个词的输出除了来自源端的信息之外,还受到了主题词的制约,最后输出的概率是这两个输出预测结果的概率之和,选择一个最优的来输出。



刚才说的是单轮的,现在说多轮怎么回答,因为人在说话的时候是考虑上下文的,不是只看当前的一句话,多轮的信息都要考虑进去。所以要把整个对话(session)考虑进去,对session进行编码,用session来预测输出的回复。



在计算的时候,我们有几个这样的模型。刚才是基于搜索的方式,还可以用多层感知的方式来模拟多轮对话。对每一个之前出现的句子进行编码,每个编码都可以通过一个句子的编码体现整个句子的信息,再通过Attention model跟目标连接,最后预测的时候就是通过基于句子的Attention model来预测。大家可以理解为我们在回复的时候既要看到前面哪一句话重要,还要看到那一句话里哪个词重要,所以是一个双层的Attention model


以上是关于聊天的介绍,还有问答和对话。


问答就是用户有问题,系统要理解这个问题,然后利用系统所有的资源来回答这个问题,资源可能是FAQ、文档、表格、知识图谱等等,哪一个回答出来了,就说明哪一个是答案,如果有多个资源都可以回答问题,那我们选取那个最有可能的来进行输出。


简单说一下所谓Knowledge base(知识图谱)有两条路走,一条是对用户的问题进行语义理解,一般用Semantic Parsing(语义分析),语义分析有很多种,比如有用CCG、DCS,也有用机器翻译来做的。它得到了一个句子的逻辑表示,根据逻辑表示再到知识库里去查,查到这个结点是什么,关系是什么等,通过这种方式,自然而然就查到了。



还有一种办法就是最近几年流行的信息检索方法。比如,一个问题“where was Barack Obama born ?”这句话里出现的了一个实体——Obama,假设这个知识库是完备的,那么系统就会判断答案一定是跟Obama关联的某个结点,这样就可以到知识库里以Obama为半径,把跟它有关的词全部挖出来,然后系统要算相似度,相似度算的时候有一种办法,是把这个知识图谱的某一个知识单元用自然语言表征出来,也可以用词嵌入做一个多维向量表示。这时候做一个Ranker跟当前的问题算一个距离,距离近的就是它的答案。我们也将这些技术运用在了微软小冰里,比如小冰回答问题,跟你聊天等等。我们还做了京东商城里的导购。


怎么在京东商城里通过对话过程来实行导购呢?实际上就是对用户输入的话,检测意图是什么,如果检测不到,系统就判断可能是聊天,然后通过聊天的引擎进行沟通。如果检测到意图,比如知道用户是要订旅馆,那么就有对应的订旅馆的对话状态表记录目前进行的状态及要填充哪些信息。


系统知道要填什么信息的时候,就会生成相应的问题让用户回答,用户回答完之后系统再把信息抽取过来填充到这个表里,直到所有的信息全部填充完毕,就完成了这个任务的对话过程。



这里就涉及到了对问题的理解,问题中有哪些信息要抓取出来,还有对话管理,比如状态的转移,slot的填充或者更改,选择一个新的slot开始对话,以及如果要决定填充哪个slot的时候,怎么生成对话可以让用户很自然地回答这个问题,从而获得系统所需要的信息。


今天简单的给大家介绍了三个关键技术,这三个技术每个都不容易,我们现在虽然取得了一定的成绩,但还有很多问题需要解决,也期待大家运用自己的智慧把这个领域推进一步,更好的解决难题。


未来有三件大事非常重要,第一个就是如何更好地来为上下文或者是多轮对话建模,目前还是用比较粗糙的信息表示方法来做,没有精确的来断定前文出现了哪些具体的信息,将来我们可以用信息抽取的方法把这些信息记录下来,引导未来的对话。


第二个,个性化的信息如何指导生成个性化的回复最后,现在的回复也是千篇一律,大人、小孩、男孩、女孩,可能都是一样的,但人们在实际对话中面对不同的人群是不一样的,如何能够对回复的风格进行自动调整,使对话更加丰富多彩,这也是目前的一个挑战。


好的,我的演讲就到此结束,谢谢!



作者简介



微软亚洲研究院副院长 周明



周明博士,微软亚洲研究院副院长、国际计算语言学协会(ACL)候任主席、中国计算机学会理事、中文信息技术专委会主任、术语工作委员会主任、中国中文信息学会常务理事、哈尔滨工业大学、天津大学、南开大学、山东大学等多所学校博士导师。他是中国第一个中英翻译系统CEMT-I(哈工大1989年)、日本最有名的中日机器翻译产品J-北京(日本高电社1998年)的研制者。


1999年,周明博士加入微软亚洲研究院,不久开始负责自然语言研究组。他带领团队进行了微软输入法、英库词典(必应词典)、中英翻译、微软中国文化系列(微软对联、微软字谜、微软绝句)等重要产品和项目的研发,并对微软Office、必应搜索、Windows等产品中的自然语言技术做出了重要贡献。近年来,周明博士领导研究团队与微软产品组合作开发了微软小冰(中国)、Rinna(日本)、Zo(美国)等聊天机器人系统。


周明博士发表了120余篇重要会议和期刊论文(包括50篇以上的ACL文章),拥有国际发明专利40余项。他多年来通过微软与中国和亚太地区的高校合作计划,与高校和学术组织联合举办暑期学校和学术会议等多种形式,对推动自然语言处理在中国和亚太的卓越发展做出了杰出贡献。





周明:未来5-10年,自然语言处理将走向成熟


来源:CSDN  

周明  微软亚洲研究院副院长




近日,微软亚洲研究院副院长周明在「自然语言处理前沿技术分享会」上,与大家讲解了自然语言处理(NLP)的最新进展,以及未来的研究方向,以下内容由CSDN记者根据周明博士的演讲内容编写,略有删减。 


周明博士于1999年加入微软亚洲研究院,不久开始负责自然语言研究组。近年来,周明博士领导研究团队与微软产品组合作开发了微软小冰(中国)、Rinna(日本)、Zo(美国)等聊天机器人系统。周明博士发表了120余篇重要会议和期刊论文(包括50篇以上的ACL文章),拥有国际发明专利40余项。






微软亚洲研究院在机器翻译、中国文化、聊天机器人和阅读理解的最新进展






机器翻译




今年微软首先在语音翻译上全面采用了神经网络机器翻译,并拓展了新的翻译功能,我们叫做Microsoft Translator Live Feature(现场翻译功能),在演讲和开会时,实时自动在手机端或桌面端,把演讲者的话翻译成多种语言。

图1 神经网络机器翻译


图1概括了神经网络机器翻译,简要的说,就是对源语言的句子进行编码,一般都是用长短时记忆(LSTM)进行编码。编码的结果就是有很多隐节点,每个隐节点代表从句首到当前词汇为止,与句子的语义信息。基于这些隐节点,通过一个注意力的模型来体现不同隐节点对于翻译目标词的作用。通过这样的一个模式对目标语言可以逐词进行生成,直到生成句尾。中间在某一阶段可能会有多个翻译,我们会保留最佳的翻译,从左到右持续。


这里最重要的技术是对于源语言的编码,还有体现不同词汇翻译的,不同作用的注意力模型。我们又持续做了一些工作,引入了语言知识。因为在编码的时候是仅把源语言和目标语言看成字符串,没有体会内在的词汇和词汇之间的修饰关系。我们把句法知识引入到神经网络编码、解码之中,这是传统的长短时记忆LSTM,这是模型,我们引入了句法,得到了更佳的翻译,这使大家看到的指标有了很大程度的提升。

图2 将知识图谱纳入传统的神经网络机器翻译中


此外,我们还考虑到在很多领域是有知识图谱的,我们想把知识图谱纳入到传统的神经网络机器翻译当中,来规划语言理解的过程。我们的一个假设就是虽然大家的语言可能不一样,但是体现在知识图谱的领域上可能是一致的,就用知识图谱增强编码、解码。具体来讲,就是对于输入句子,先映射到知识图谱,然后再基于知识图谱增强解码过程,使得译文得到进一步改善。


以上两个工作都发表在本领域最重要的会议ACL上,得到很多学者的好评。

图3 Microsoft Translator Live Feature工作场景




中国文化




大家会说,中国文化和人工智能有什么关系?中国文化最有代表性的是对联、诗歌、猜谜语等等,它怎么能够用人工智能体现呢?好多人一想这件事就觉得不靠谱,没法做。但是我们微软亚洲研究院就利用然语言处理的技术,尤其是机器翻译的经验,果断进军到中国文化里,这个在全世界独树一帜。


在2004年的时候,当时我们的沈向洋院长领导我们做了一个微软对联:用户输入上联,电脑自动对出下联,语句非常工整,甚至更进一步把横批对出来。这个系统在当时跟新浪进行了合作,做成了一个手机游戏,用户可以通过发短信的方式,将上联发过去,然后通过短信接收下联。当时大家都觉得很有意思。微软对联也是世界上第一次采用机器翻译的技术来模拟对联全过程。过去也有人做对联游戏,都是用规则的方法写很多很多的语言学规则,确保什么样的词跟什么样的词对,并符合对仗、平仄一堆语言学的规则,但是实际效果不好,也没有人使用。


我们把机器翻译技术巧妙用在中国文化上,解决了这个问题。在微软对联的基础上,我们继续去尝试其他的中国文化,其中有一个特色就是字谜。


我们小时候都爱猜字谜,领奖品。字谜是给你谜面让你猜谜底。当然也可以反过来,给定一个谜底,让你出谜面。现在,已经可以用电脑来模拟整个猜字谜和出字谜的过程了,我们也把这个功能放在了微软对联的网站上。


往后,更进一步,我们还会用人工智能技术来发展中国最经典的文化,包括绝句和律诗等。例如宋词有长短句,我们也可以用同样的技术来创作律诗、绝句和宋词。


最近,微软亚洲研究院的主管研究员宋睿华博士就在用这种神经网络的技术来进行诗歌的创作。这件事非常有创意:用户提交一个照片,让系统进行,然后变成一首诗,自由体的诗。写诗是很不容易的,因为要体现意境。你说这是山,这是水,这不叫诗;诗歌必须要升华、凝练,用诗的语言来体现此时的情或者景,由景入情,由情入景,这才是诗。


不久前,微软小冰发布了微软小冰写诗的技能,引起了很多人的关注。我们也在此基础上展示其他的中国文化,把人工智能和中国文化巧妙结合起来,弘扬中国文化。




对话即平台




“对话即平台”英文叫做“Conversation as a Platform (CaaP)”。2016年,微软首席执行官萨提亚在大会上提出了CaaP这个概念,他认为继图形界面的下一代就是对话,它会对整个人工智能、计算机设备带来一场新的革命。


图4 通用对话引擎架构



为什么要提到CaaP这个概念呢?我个人认为,有两个原因。




● 源于大家都已经习惯用社交手段,如微信、Facebook与他人聊天的过程。我们希望将这种通过自然的语言交流的过程呈现在当今的人机交互中,而语音交流的背后就是对话平台。


● 现在大家面对的设备有的屏幕很小,有的甚至没有屏幕,所以通过语音的交互,更为自然直观的。因此,我们是需要对话式的自然语言交流的,通过语音助手来帮忙完成。


而语音助手又可以调用很多Bot,来完成一些具体的功能,比如说定杯咖啡,买一个车票等等。芸芸众生,有很多很多需求,每个需求都有可能是一个小Bot,必须有人去做这个Bot。而于微软而言,我们作为一个平台公司,希望把自己的能力释放出来,让全世界的开发者,甚至普通的学生就能开发出自己喜欢的Bot,形成一个生态的平台,生态的环境。

如何从人出发,通过智能助理,再通过Bot体现这一生态呢?微软在做CaaP的时候,实际上有两个主要的产品策略。

第一个是小娜,通过手机和智能设备介入,让人与电脑进行交流:人发布命令,小娜理解并执行任务。同时,小娜作为你的贴身处理,也理解你的性格特点、喜好、习惯,然后主动给你一些贴心提示。比如,你过去经常路过某个地方买牛奶,在你下次路过的时候,她就会提醒你,问你要不要买。她从过去的被动到现在的主动,由原来的手机,到微软所有的产品,比如Xbox和Windows,都得到了应用。现在,小娜已经拥有超过1.4亿活跃用户,在数以十亿级计的设备上与人们进行交流。现在,小娜覆盖的语言已经有十几种语言,包括中文。小娜还在不断发展,这背后有很多自然语言技术来自微软研究院,包括微软亚洲研究院。

第二个就是小冰。它是一种新的理念,很多人一开始不理解。人们跟小冰一起的这种闲聊有什么意思?其实闲聊也是人工智能的一部分,我们人与人见面的时候,寒喧、问候、甚至瞎扯,天南海北地聊,这个没有智能是完成不了的,实际上除了语言方面的智能,还得有知识智能,必须得懂某一个领域的知识才能聊起来。所以,小冰是试图把各个语言的知识融汇贯通,实现一个开放语言自由的聊天过程。这件事,在全球都是比较创新的。现在,小冰已经覆盖了三种语言:中文、日文、英文,累积了上亿用户。很多人跟它聊天乐此不疲,而平均聊天的回数多达23轮。这是在所有聊天机器人里面遥遥领先的。而平时聊天时长大概是25分钟左右。小冰背后三种语言的聊天机器人也都来自于微软亚洲研究院。

无论是小冰这种闲聊,还是小娜这种注重任务执行的技术,其实背后单元处理引擎无外乎就三层技术:

 通用聊天,需要掌握沟通技巧、通用聊天数据、主题聊天数据,还要知道用户画像,投其所好。


 信息服务和问答,需要搜索的能力,问答的能力,还需要对常见问题表进行收集、整理和搜索,从知识图表、文档和图表中找出相应信息,并且回答问题,我们统称为Info Bot。


 面向特定任务的对话能力,例如定咖啡、定花、买火车票,这个任务是固定的,状态也是固定的,状态转移也是清晰的,那么就可以用Bot一个一个实现。你有一个调度系统,你知道用户的意图就调用相应的Bot 执行相应的任务。它用到的技术就是对用户意图的理解,对话的管理,领域知识,对话图谱等等。


实际上,人类拥有这全部三个智能,而且人知道什么时候用什么智能,就是因为最上头,还有一个调度系统。你跟我闲聊的时候,我就会跟你闲聊;你跟我严肃地问问题,那么我就会回答你的问题。通过一个调度系统,可以想象,我们在做人机对话的时候,其实是在根据用户的提问调用不同的引擎,再根据不同的意图调用不同的Bot。这样整体来实现一个所谓的人机交互全过程。这背后的技术由不同的研究员分别去进行实施,然后再整体通过跟产品组合作体现一个完美的产品流程。

微软想把有关的能力释放给全世界,让每个人都能够体验人工智能的好处,让开发者开发自己的Bot。但是开发者的机器不懂自然语言,怎么办呢?我们就通过一个叫Bot Framework的工具、平台来实现。

任何一个开发者只用几行代码就可以完成自己所需要的Bot。这里有一个简单的例子,这个人想做一个披萨的Bot,他用Bot的框架,这几行语句填入相应的知识,相应的数据,就可以实现一个简单的定披萨的Bot。你可以想象很多小业主,没有这种开发能力,但是就是可以简单操作几下,就可以做一个小Bot吸引来很多客户。

这里面有很多关键技术。微软有一个叫做LUIS(Language Understanding Intelligent Service)的平台,提供了用户的意图理解能力、实体识别能力、对话的管理能力等等。比如说这句话“read me the headlines”,我们识别的结果是他想做朗读,内容就是今天的头条新闻。再比如说“Pause for 5 minutes”,我们理解它的意思是暂停,暂停多长时间?有一个参数:5分钟。所以,通过LUIS,我们可以把意图和重要的信息抽取出来,让后面Bot来读取。

图5 微软语言理解服务

微软的聊天对话技术也在与很多企业合作,赋能这些企业。比如,我们跟敦煌研究院合作。敦煌研究院提供出数据,我们则把我们的引擎加上去,很快就建立了一个敦煌研究院的客服系统,借助敦煌研究院公众号,可以让用户和它聊与敦煌有关的事。用户也可以问问题,例如敦煌研究院什么时候开门、有什么好吃的,他可以把聊天、对话都集成在一个平台上,发挥人工智能在公众号上的作用。

图6 敦煌公众号客服系统



阅读理解




阅读理解顾名思义就是给你一篇文章,看你理解到什么程度。人都有智能,而且是非常高的智能。除了累积知识,还要懂一些常识。具体测试你的阅读能力、理解能力的手段,一般都是给一篇文章,再你一些问题。你能来就说明你理解了,答不上来就说明你不理解。对电脑的测试也是这样。


图7 莱茵河介绍

我给大家举个例子,说明一下阅读理解。图7中,这一段话的大意是在介绍莱茵河,它流经哪些国家,最终在哪里注入大海。莱茵河畔最大的城市是德国科隆。它是中欧和西欧区域的第二长河流,仅次于多瑙河之后,约1230公里。然后,我们问的问题是,什么河比莱茵河长?当你读完了这段话,你就要推断,“after”在这里是什么意思,从而才能得出正确答案是多瑙河。电脑要做这道题,实际上要仔细解析很多问题,最终才能作出回答。



未来5-10年,NLP将走向成熟




最后,再介绍一下我对自然语言处理目前存在的问题以及未来的研究方向的一些考虑,供大家参考。


随着大数据、深度学习、云计算这三大要素推动,所谓认知智能,尤其是语言智能跟感知智能一样会有长足的发展。你也可以说,自然语言处理迎来了60余年发展历史上最好的一个时期,进步最快的一个时期,从初步的应用到搜索、聊天机器人上,到通过对上下文的理解,知识的把握,它的处理能力得到长足的进步。具体来讲,我认为,口语机器翻译肯定会完全普及,将来我认为它就是手机上的标配。任何人出国,无论到了哪个国家,拿起电话来你说你的母语,跟当地人交流不会有太大的问题,而且是非常自如的过程,就跟你打电话一样。所以,我认为口语机器翻译会完全普及。虽然这不意味着同声翻译能彻底颠覆,也不意味着这种专业领域的文献的翻译可以彻底解决;但我认为还是会有很大的进展。


 自然语言的会话、聊天、问答、对话达到实用程度这是什么意思?这意味着在常见的场景下,通过人机对话的过程完成某项任务。这个是可以完全实现,或者跟某个智能设备进行交流,比如说关灯、打开电脑、打开纱窗这种一点问题都没有,包括带口音的说话都可以完全听懂。但是同样,这也不代表任何话题、任何任务、用任何变种的语言去说都可以达到。目前离那个目标还很远,我们也在努力。


 智能客服加上人工客服完美的结合,一定会大大提高客服的效率我认为很多重复的客服工作,比如说问答,还有简单的任务,基本上人工智能都可以解决。但是复杂的情况下仍然不能解决。所以,它实际上是人工智能跟人类智能完美结合来提高一个很好的生产力,这个是没有问题的。


 自动写对联、写诗、写新闻稿和歌曲等等,今天可能还是一个新鲜的事物,但是5到10年一定都会流行起来,甚至都会用起来比如说写新闻稿,给你一些数据,这个新闻稿草稿马上就写出来,你要做的就是纠正,供不同的媒体使用等。


 NLP将推动语音助手、物联网、智能硬件、智能家居的普及。


 NLP与其他AI技术一起在金融、法律、教育、医疗等垂直领域将得到广泛应用。


但是,我们也清醒地看到,虽然有一些很好的预期,但是自然语言处理还有很多很多没有解决的问题。以下几个我认为比较重要的。

1.通过用户画像实现个性化服务现在自然语言处理基本上用户画像用得非常非常少。人与人的对话,其实是对不同的人说不同的话,因为我们知道对话的人的性格、特点、知识层次,我了解了这个用户,知道用户的画像,那么在对话的时候就会有所调整。目前来讲,我们还远远不能做到这一点。


2.通过可解释的学习洞察人工智能机理现在自然语言处理跟其他的人工智能一样,都是通过一个端对端的训练,而其实里面是一个黑箱,你也不知道发生了什么,哪个东西起作用,哪个东西没有起作用。我们也在思考,有没有一种可解释的人工智能,帮助我们知道哪些地方发挥了作用,哪些地方是错的,然后进行修正,快速调整我们的系统。目前还没有针对这个问题很好的解决方案,尽管有一些视觉化的工作,但是都比较粗浅,还没有达到最精准的判定和跟踪。


3.通过知识与深度学习的结合提升效率所谓知识和深度学习的结合,有可能很多情况下是需要有人类知识的。比如说客服,是有一些常见处理过程的。那么出现问题我该怎么解决?这些知识如何跟数据巧妙结合,从而加快学习的过程、提高学习的质量,这也是比较令人关注的。


4.通过迁移学习实现领域自适应如果们想翻某一个专业领域,比如说计算机领域,可能现有的翻译工具翻得不好。所以大家都在研究,有没有一种办法,能够帮助机器进行迁移学习,能够更好的运用到语音自适应上。


5.通过强化学习实现自我演化这就是说我们自然语言系统上线之后有很多人用,得到了有很多人的反馈,包括显示的反馈、隐式的反馈,然后通过强化学习不断的提升系统。这就是系统的自我演化。


6.最后,我认为也是非常关键的,通过无监督学习充分利用未标注数据现在都依赖于带标注的数据,没有带标注的数据没有办法利用。但是很多场景下,标注数据不够,你找人工标注代价又极大。那么如何用这些没有标注的数据呢?这就要通过一个所谓无监督的学习过程,或者半监督的学习过程增强整体的学习过程。这里也是目前研究上非常令人关注的。


本文由CSDN根据周明博士的演讲内容编写,已获授权转载




从短句到长文,计算机如何学习阅读理解


来源:微软研究院AI头条                    

 

(从左至右:崔磊、韦福如、周明、杨南)


在电影《她(HER)》中有这样一幕:主人公是一位信件撰写人,人工智能操作系统萨曼莎在得到他的允许后阅读他的邮件资料,总结出需要保留和删除的邮件,帮助他修改信件草稿中的错字,并且与他探讨她喜爱的信件片段。与此同时,萨曼莎通过阅读主人公的海量信息来了解他,也通过阅读互联网上的海量数据来了解世界。阅读这项人类的基本能力,在众多科幻作品中也成了人工智能的入门标配。

 

尽管人工智能的热点此起彼伏,但毫无疑问的是,自然语言处理始终是实现智能、自然人机交互愿景里一块重要的技术基石。而机器阅读理解则可以被视为是自然语言处理领域皇冠上的明珠,也是目前该领域的研究焦点之一。

 

做机器阅读理解研究的学者想必对由斯坦福大学自然语言计算组发起的SQuAD(Stanford Question Answering Dataset)文本理解挑战赛并不陌生,它也被誉为“机器阅读理解界的ImageNet”。诸多来自全球学术界和产业界的研究团队都积极地参与其中,目前微软亚洲研究院的自然语言计算研究组持续稳居榜首,与包括艾伦研究院、IBM、Salesforce、Facebook、谷歌以及CMU(卡内基·梅隆大学)、斯坦福大学等在内的全球自然语言处理领域的研究人员,共同推动着自然语言理解的进步。


2017年5月8日SQuAD排名和结果截图,其中微软亚洲研究院的集成模型(ensemble)和单模型(single model)分列各自排名首位


那么,SQuAD机器阅读理解挑战赛是怎样进行的呢?SQuAD通过众包的方式构建了一个大规模的机器阅读理解数据集(包含10万个问题),即将一篇几百(平均100,最多800)词左右的短文给标注者阅读,随后让标注人员提出最多5个基于文章内容的问题并提供正确答案。SQuAD向参赛者提供训练集用于模型训练,以及一个规模较小的数据集作为开发集,用于模型的测试和调优。与此同时,他们提供了一个开放平台供参赛者提交自己的算法,并利用测试集对其进行评分,评分结果将实时地在SQuAD官网上进行更新。

 

得益于SQuAD所提供的庞大数据规模,参与该项挑战赛的选手不断地对成绩进行刷新,SQuAD挑战赛也逐步成为行业内公认的机器阅读理解标准水平测试。在今年的ACL大会(自然语言处理领域最顶尖的会议之一)的投稿里,有非常多的论文就是关于这项挑战赛的研究,其影响力可见一斑。从ACL 2017论文主题的可视分析中可以看到,“reading comprehension(阅读理解)”是今年ACL录取论文中最热门的关键词和任务,广受自然语言处理领域研究人员的关注。

 

“虽然偶尔有一两天其它团队超过了我们的成绩,但我们也有最新的算法能够很快地进行更新,并取得更好的成绩,对于这一点我们的团队始终十分自信。”机器阅读理解研究的主要负责人、微软亚洲研究院自然语言计算研究组主管研究员韦福如表示。




自然语言计算领域皇冠上的明珠




如今,我们在图像识别、机器翻译和语音识别等研究领域已经看到了机器学习带来的显著成果。例如图像识别技术对癌细胞病理切片的识别能力已逐步超过人类,目前机器围棋棋手的棋力已经几乎无人能敌……在人工智能技术进步向人们展现了各种可喜的成果之后,大家将探寻的目光投向更远的未来,下一个人工智能技术的增长点在哪里

 

狂热过后,当我们重新审视人工智能这个问题时,一个最基本的问题可能尚未解决:计算机能够理解多少我们的语言了?

 

一些人类学家认为,语言是构建人类文明的基石。在语言之上,我们构建了神话、宗教;构建了城邦,帝国;还构建了信任、信仰。计算机发明以来,层出不穷的编程语言都在教人们学会和计算机对话,而人们理想中的人工智能则是应该主动学习,掌握人类语言的奥义。为此微软提出了CaaP(Conversation as a Platform,对话即平台)战略,并将对话式人工智能作为微软在人工智能领域布局的重点。

 

计算语言学协会(ACL, Association for Computational Linguistics)候任主席,微软亚洲研究院副院长周明博士认为:“自然语言处理的基本研究包括分词、断句、句法语义分析等等。而机器阅读理解就是自然语言计算领域皇冠上的明珠。”

 

一般来说,人们在读完一篇文章之后就会在脑海里形成一定的印象,例如这篇文章讲的是什么人,做了什么事情,出现了什么,发生在哪里等等。人们能够很轻而易举地归纳出文章中的重点内容。机器阅读理解的研究就是赋予计算机与人类同等的阅读能力,即让计算机阅读一篇文章,随后让计算机解答与文中信息相关的问题。这种对人类而言轻而易举的能力,对计算机来说却并非如此。

 

很长一段时间以来,自然语言处理的研究都是基于句子级别的阅读理解。例如给计算机一句话,理解句子中的主谓宾、定状补,谁做了何事等等。但长文本的理解问题一直是研究的一个难点,因为这涉及到句子之间的连贯、上下文和推理等更高维的研究内容。

 

比如下面这段文本: The Rhine (Romansh: Rein, German: Rhein, French: le Rhin, Dutch: Rijn) is a European river that begins in the Swiss canton of Graubünden in the southeastern Swiss Alps, forms part of the Swiss-Austrian, Swiss-Liechtenstein border, Swiss-German and then the Franco-German border, then flows through the Rhineland and eventually empties into the North Sea in the Netherlands. The biggest city on the river Rhine is Cologne, Germany with a population of more than 1,050,000 people. It is the second-longest river in Central and Western Europe (after the Danube), at about 1,230 km (760 mi), with an average discharge of about 2,900 m3/s (100,000 cu ft/s). (大意:莱茵河是一条位于欧洲的著名河流,始于瑞士阿尔卑斯山,流经瑞士、 奥地利、列支敦士登、法国、德国、荷兰,最终在荷兰注入北海。莱茵河上最大的城市是德国科隆。它是中欧和西欧区域的第二长河流,位于多瑙河之后,约1230公里。)

 

若针对该段内容提问:What river is larger than the Rhine?(什么河比莱茵河长?)人们可以轻易地给出答案:Danube(多瑙河)。但目前即使是最佳的系统模型R-NET给出的输出也并不尽人意,它的回答是:科隆,可见要让计算机真正地理解文本内容并像人一样可以对文字进行推理的难度是如此之大。在回答该问题时,计算机除了要处理文中的指代“it”,还需要算法和模型进一步对“larger than”和“after”这两个表述进行推理,从而得知Danube是正确答案。此外,由于文中并没有显式提到Danube是“river”,所以又加大了系统的推理难度。

 

但大数据的发展让学者们看到了这一研究方向的曙光。可获取的越来越大的文本数据,加上深度学习的算法以及海量的云计算资源,使得研究者们可以针对长文本做点对点的学习,即对句子、短语、上下文进行建模,这其中就隐藏了一定的推理能力。所以,目前自然语言处理领域就把基于篇章的理解提上研究的议事日程,成为目前该领域的研究焦点之一。而针对上文提及的相关难点,微软亚洲研究院自然语言计算研究组正在进行下一步的研究和探索。




做顶尖的机器阅读理解研究




正如前文所说,机器阅读理解的研究之路始终充满着许多困难和挑战。

 

首先是数据问题。目前基于统计方法(尤其是深度学习模型)的机器阅读理解的研究离不开大量的、人工标注的数据。在SQuAD数据集推出之前,数据集常常面临规模较小,或是质量不佳(因为多是自动生成)的问题,而SQuAD无论是在数据规模还是数据质量上都有一个很大的提升。在基于深度学习方法的研究背景下,数据量不够就很难做出有效、或是有用的模型,更难对模型进行合理、标准的测试。

 

另一方面则是算法问题。之前自然语言处理在做阅读理解或者是自动问答研究的时候,会把这个研究问题视作一个系统的工程,因而把这个问题分成许多不同的部分。例如先去理解用户的问题;再去找答案的候选;再将候选答案进行精挑细选、互相比较;最后对候选答案进行排序打分,挑选出最可能的答案或者生成最终的答案。而这个繁复的过程中,似乎其中的每一步都是可以优化的。

 

但它相应地也会带来一些问题。第一,当你分步去优化这其中的每一个过程的时候,你会去研究如何更好地理解这个问题,或是研究如何更好地把答案做对,这些分目标研究结果的整合未必能和“如何将阅读理解的答案正确找出来”这个目标完全吻合。第二,如果想做局部的优化,就意味着每一个局部过程都需要相应的(标注)数据,这使得阅读理解的研究进展缓慢。如果只使用问题-答案作为训练数据,中间模块的优化得到的监督信息不那么直接,因而很难有效。

 

结合了上述问题,微软亚洲研究院自然语言计算研究组的机器阅读理解研究团队采用的则是一个端到端的深度学习模型的解决方案,区别于上述的每一个细化环节的具体优化过程,他们采取的方法是把中间环节尽可能的省去,使得整体的过程能够得到最优效果。

 

实际上,SQuAD的挑战赛形式就是让系统在阅读完一篇几百词左右的短文之后再回答5个基于文章内容的问题。这个问题可能比大家熟知的高考英文阅读理解,或是托福阅读考试都要难得多。人们参加的这些考试往往是一个答案被限定住范围的选择题。

 

但是在SQuAD的数据集中,问题和答案具有非常丰富的多样性。这五个问题中可能涉及文章中的某一个人,某一个地点,或是某一个时间等等实体;也有可能会问一些为什么(Why)、怎么样(How)的问题。后者的答案可能实际上是一句话,甚至是一小段话,因此解决这个问题只会更加棘手。

 

另外,在SQuAD数据集中,除了问题的多样性之外,研究员们发现还有更多的挑战。比如语言(包括词级别和句子级别)的歧义性,对于同一个意思,问题和短文会用不同的词语或者句型表述(在标注指南中就明确要求标注者尽可能使用不同的表述)。另一个很有难度的挑战是对于有些问题,找到正确答案需要用到整篇短文中的不同句子的信息,进而对这些信息进行聚合和比较才能最终得出正确的答案。当然,也有一部分问题需要用到比较复杂的推理、常识和世界知识,面对这类问题就更是难以处理。下表是发布SQuAD数据集一文中给出的总结。


表格来源:Rajpurkar et al. '16

 

目前SQuAD挑战赛采用两个评价标准来对参与系统的结果进行评测。由人工标注的答案作为标准,系统自动依据准确性和相似度两个不同的维度进行打分,较客观地保证了评分系统的公平性。微软亚洲研究院团队在这两个不同维度的评价标准上均取得了最优的成绩,其准确度达到了76.922%,相似度达到了84.006%,高出第二名近两个百分点。




R-NET: 基于深度神经网络的端到端系统




为了研究机器阅读理解的问题,包括韦福如和杨南等在内的研究团队试图去建模人做阅读理解的过程。他们采用了R-NET,一个多层的网络结构,分别从四个层面对整个阅读理解任务的算法进行了建模。

 

我们在做阅读理解的过程中,一个常见的顺序是这样的:首先阅读整篇文章,对文章有一个初步理解之后再去审题,从而对问题也有了一定认知。第二步,可能就需要将问题和文中的部分段落和内容做一些关联。例如题干中出现的某些关键已知信息(或证据)的,找出一些候选答案,举例来说:如果问题问的信息是时间,那么文中出现的与时间相关的信息就可能是候选答案。第三步,当我们将候选答案与问题进行对应之后,我们还需要综合全文去看待这些问题,进行证据的融合来辅证答案的正确性。最后一步,就是针对自己挑出的答案候选进行精筛,最终写下最正确的答案。

 

有鉴于此,研究组提出的模型也就分为这样的四层。最下面的一层做表示学习,就是给问题和文本中的每一个词做一个表示,即深度学习里的向量。这里研究组使用的是多层的双向循环神经网络。第二步,就是将问题中的向量和文本中的向量做一个比对,这样就能找出那些问题和哪些文字部分比较接近。接下来,将这些结果放在全局中进行比对。这些都是通过注意力机制(attention)达到的。最后一步,针对挑出的答案候选区中的每一个词汇进行预测,哪一个词是答案的开始,到哪个词是答案的结束。这样,系统会挑出可能性最高的一段文本,最后将答案输出出来。整个过程就是一个基于以上四个层面的神经网络的端到端系统(见下图)。


微软亚洲研究院提出的R-NET算法的网络结构图。其中最为独特的部分是第三层文章的自匹配网络(Self-Matching Networks),更多细节请点击阅读原文,参考技术报告。

 

关于这项研究的论文已经被ACL 2017录用,并获得审稿者的一致好评。

 

SQuAD数据集于2016年9月份发布了正式版。一经推出,微软亚洲研究院自然语言计算研究组就敏锐地判断这是一个非常重要的数据集,将会极大地推动机器阅读理解的研究,并将在研究界和工业界产生积极深远的影响。10月,研究团队就第一次提交了他们的研究成果,并且取得了第一名的好成绩,而后续几个月的数次提交,则是在不断地刷新着自己的成绩。对于研究团队来说,这其实是一个试错的过程,团队每天都会讨论总结当天的试错成果,有新的想法就不断尝试。




未来的方向




提及机器阅读理解未来值得探索的方向,韦福如分享了他的三点看法。他认为一方面基于深度学习的算法和模型还有很大的空间,适合机器阅读理解的网络结构值得在SQuAD类似的数据集上进一步尝试和验证。具体来说,通过对R-NET目前处理不好的问题的进一步分析,能否提出可以对复杂推理进行有效建模,以及能把常识和外部知识(比如知识库)有效利用起来的深度学习网络,是目前很有意义的研究课题。另外,目前基于深度学习的阅读理解模型都是黑盒的,很难直观地表示机器进行阅读理解的过程和结果,因而可解释性的深度学习模型也将是很有趣的研究方向。

 

其次,人类理解文本的能力是多维度的,结合多任务(尤其是阅读理解相关的任务,例如阅读理解之后进行摘要和问答)的模型非常值得关注和期待。更进一步,虽然SQuAD提供了比较大的人工标注数据集,如何有效且高效地使用未标注的数据也是非常值得期待的研究课题和方向。最后从任务上看,目前SQuAD的任务定义中答案是原文的某个子片段,而实际中人可能读完文章之后需要进行更复杂的推理、并组织新的文字表达出来。

 

“目前我们的算法基本都是抽取型的方式,未来生成型的算法也值得更多的探索和研究。另外,目前机器阅读理解关注的都是理解客观信息的能力,未来机器理解文字里面所表达出来的主观信息(例如情感)也是非常有趣并值得关注的方向。”韦福如说道。

 



人工智能赛博物理操作系统

AI-CPS OS

“人工智能赛博物理操作系统”新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细:种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链






长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市”、“智能驾驶”;新模式:“财富空间”、“特色小镇”、“赛博物理”、“供应链金融”


点击“阅读原文”,访问AI-CPS OS官网




本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





登录查看更多
6

相关内容

周明,微软亚洲研究院副院长、国际计算语言学会前任会长,中国多所大学博士生导师,首都劳动奖章获得者。曾获得2010年华尔街日报亚洲创新奖、2012年微软CEO Ability Award以及2019年中国乌镇互联网大会世界互联网领先科技奖。中国第一个中英机器翻译系统和日本最著名的中日机器翻译的产品研究者。长期领导微软亚洲研究院的NLP研究。主编《机器翻译》《智能问答》等技术专著。CCF-NLPCC、语言与智能高峰论坛的策划组织者之一,ACL亚洲分部创建人。
NLP 与 NLU:从语言理解到语言处理
AI研习社
15+阅读 · 2019年5月29日
对话黄学东:语音语言技术是镶在 AI 皇冠上的明珠
微软研究院AI头条
7+阅读 · 2019年5月17日
AI会话能力超越人类!CoQA挑战赛微软创新纪录
媲美人类对话水平!微软最新NLP模型3项评分全面超越人类水平!
机器学习算法与Python学习
8+阅读 · 2019年5月4日
一文看懂自然语言理解(NLU)
AINLP
26+阅读 · 2019年4月27日
对话微软小冰武威:聊天机器人的演进之路
智东西
10+阅读 · 2018年12月10日
知识在检索式对话系统的应用
微信AI
32+阅读 · 2018年9月20日
最全面的百度NLP自然语言处理技术解析
InfoQ
7+阅读 · 2017年11月12日
Natural 自然语言处理(NLP)「全解析」
人工智能学家
14+阅读 · 2017年9月23日
自然语言处理在人机对话中的应用
京东大数据
8+阅读 · 2017年8月11日
Arxiv
21+阅读 · 2019年8月21日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
6+阅读 · 2018年11月1日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
VIP会员
相关VIP内容
相关资讯
NLP 与 NLU:从语言理解到语言处理
AI研习社
15+阅读 · 2019年5月29日
对话黄学东:语音语言技术是镶在 AI 皇冠上的明珠
微软研究院AI头条
7+阅读 · 2019年5月17日
AI会话能力超越人类!CoQA挑战赛微软创新纪录
媲美人类对话水平!微软最新NLP模型3项评分全面超越人类水平!
机器学习算法与Python学习
8+阅读 · 2019年5月4日
一文看懂自然语言理解(NLU)
AINLP
26+阅读 · 2019年4月27日
对话微软小冰武威:聊天机器人的演进之路
智东西
10+阅读 · 2018年12月10日
知识在检索式对话系统的应用
微信AI
32+阅读 · 2018年9月20日
最全面的百度NLP自然语言处理技术解析
InfoQ
7+阅读 · 2017年11月12日
Natural 自然语言处理(NLP)「全解析」
人工智能学家
14+阅读 · 2017年9月23日
自然语言处理在人机对话中的应用
京东大数据
8+阅读 · 2017年8月11日
Top
微信扫码咨询专知VIP会员