【WWW2022】学习和评估基于反事实和事实推理的图神经网络解释

2022 年 2 月 20 日 专知


结构化数据在网络应用中很好地存在,如社交媒体中的社交网络、学术网站中的引文网络、在线论坛中的线程数据。由于拓扑结构的复杂性,这些数据中的丰富信息难以处理和利用。图神经网络(GNN)在结构化数据的学习表示方面显示出极大的优势。然而,深度学习模型的不透明性使得解释GNN的预测变得非常重要。同时,GNN解释的评价也是一个巨大的挑战,因为在很多情况下,基准真相解释是不可用的。在本文中,我们从因果推理理论中借鉴反事实和事实推理(CF^2)的观点,来解决可解释GNN中的学习和评价问题。为了生成解释,我们提出了一个模型无关的框架,通过建立一个优化问题的基础上,这两个随意的观点。这将CF^2与之前只考虑其中一个的可解释GNN区分开来。这项工作的另一个贡献是对GNN解释的评价。为了在不要求基本事实的情况下定量地评估生成的解释,我们设计了基于反事实和事实推理的度量标准,以评估解释的必要性和充分性。实验表明,无论基准真相解释是否可用,CF^2在真实数据集上都比以前的最先进的方法产生了更好的解释。此外,统计分析证明了基准真相评估和我们提出的指标之间的相关性。


https://www.zhuanzhi.ai/paper/3b2867aa0d96b5b6a4993c1affa0e534



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“CFRE” 就可以获取【WWW2022】学习和评估基于反事实和事实推理的图神经网络解释》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取70000+AI主题知识资源
登录查看更多
4

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
专知会员服务
32+阅读 · 2021年10月4日
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
55+阅读 · 2021年5月17日
专知会员服务
68+阅读 · 2021年4月27日
[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
专知会员服务
29+阅读 · 2021年2月26日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
【CIKM2020】推荐系统的神经模板解释生成
专知会员服务
33+阅读 · 2020年9月9日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【WWW2021】基于知识嵌入的图卷积网络
专知
0+阅读 · 2021年4月27日
【WWW2021】高效的非抽样知识图谱嵌入
专知
0+阅读 · 2021年4月25日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
【新书册】贝叶斯神经网络,41页pdf
专知
28+阅读 · 2020年6月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
12+阅读 · 2020年6月20日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关VIP内容
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
专知会员服务
32+阅读 · 2021年10月4日
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
55+阅读 · 2021年5月17日
专知会员服务
68+阅读 · 2021年4月27日
[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
专知会员服务
29+阅读 · 2021年2月26日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
【CIKM2020】推荐系统的神经模板解释生成
专知会员服务
33+阅读 · 2020年9月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员