高级API、异构图:谷歌发布TF-GNN,在TensorFlow中创建图神经网络

2021 年 11 月 19 日 机器之心
机器之心报道

编辑:陈萍

高效且友好的 TensorFlow GNN 库。
今天,TensorFlow 官方博客发布了 TensorFlow Graph Neural Networks(TensorFlow GNN)库 ,这个库使得用户在使用 TensorFlow 时能够轻松处理图结构数据。

此前,TensorFlow GNN 的早期版本已经在谷歌的各种应用中使用,包括垃圾邮件和异常检测、流量估计、YouTube 内容标记等。特别是,考虑到谷歌数据种类繁多,该库在设计时就考虑到了异构图。


项目地址:https://github.com/tensorflow/gnn

为何使用 GNN?

无论是在现实世界中,还是在我们设计的系统中,图无处不在。一组对象或是不同的人以及他们之间的联系,通常可以用图来描述。通常情况下,机器学习中的数据是结构化或关系型的,因此也可以用图来描述。虽然 GNN 的基础研究已经有几十年的历史,但近几年才取得一些进展,包括在交通预测、假新闻检测、疾病传播建模、物理模拟,以及理解为什么分子会有气味等。

图可以为不同类型的数据进行关系建模,包括网页(左)、社交关系(中)或分子(右)。

怎样定义图呢?简单来讲,图表示一组实体(节点或顶点)之间的关系(边)。我们可以描述每个节点、边或整个图,从而将信息存储在图的每一部分中。此外,我们可以赋予图边缘方向性来描述信息或信息流。

GNN 可以用来回答关于这些图的多个特征问题。GNN 可用于节点级任务,对图的节点进行分类,并预测图中的分区和相关性,类似于图像分类或分割。最后,我们可以在边缘级别使用 GNN 来发现实体之间的连接。

TensorFlow GNN

TF-GNN(TensorFlow GNN) 提供了在 TensorFlow 中实现 GNN 模型的构建块。除了建模 API 之外,该库还为处理图数据提供了可用工具,包括基于张量的图数据结构、数据处理 pipeline 和一些供用户快速入门的示例模型。

TF-GNN 工作流程组件

TF-GNN 库的初始版本包含许多实用程序和功能,供初学者和有经验的用户使用,包括:

  • 高级 keras 风格的 API 用于创建 GNN 模型,可以很容易地与其他类型的模型组合。GNN 通常与排序、深度检索结合使用或与其他类型的模型(图像、文本等)混合使用;

  • 定义良好的模式用来声明图拓扑结构,以及验证工具。该模式描述了其训练数据的大小,并用于指导其他工具;

  • GraphTensor 复合张量类型,可以用来保存图数据,也可以进行批处理,并具有可用的图操作例程;

  • GraphTensor 结构操作库:在节点和边缘上进行各种有效的 broadcast 和 pooling 操作,以及提供相关操作的工具;标准 baked 卷积库,机器学习工程师、研究人员可以对其轻松扩展;高级 API 可以帮助工程师快速构建 GNN 模型而不必担心细节;

  • 模型可以从图训练数据编码,以及用于将此数据解析为数据结构的库中提取各种特征。


示例

下面示例使用 TF-GNN Keras API 构建了一个模型,该模型可以根据观看内容和喜欢的类型向用户推荐电影。

完成这项任务使用 ConvGNNBuilder 方法来指定边的类型和节点配置,即对边使用 WeightedSumConvolution(定义如下):

import tensorflow as tf
    import tensorflow_gnn as tfgnn

    # Model hyper-parameters:
    h_dims = {'user'256'movie'64'genre'128}

    # Model builder initialization:
    gnn = tfgnn.keras.ConvGNNBuilder(
      lambda edge_set_name: WeightedSumConvolution(),
      lambda node_set_name: tfgnn.keras.layers.NextStateFromConcat(
         tf.keras.layers.Dense(h_dims[node_set_name]))
    )

    # Two rounds of message passing to target node sets:
    model = tf.keras.models.Sequential([
        gnn.Convolve({'genre'}),  # sends messages from movie to genre
        gnn.Convolve({'user'}),  # sends messages from movie and genre to users
        tfgnn.keras.layers.Readout(node_set_name="user"),
        tf.keras.layers.Dense(1)
    ])


有时我们希望 GNN 性能更强大,例如,在上个示例中,我们可能希望模型在给出推荐电影时可以同时给出权重。下面代码片段中定义了一个更高级的 GNN,它带有自定义图卷积,以及带有权重边。下面代码定义了 WeightedSumConvolution 类可以将边值池化为所有边的权重总和:

class WeightedSumConvolution(tf.keras.layers.Layer):
  """Weighted sum of source nodes states."""

  def call(self, graph: tfgnn.GraphTensor,
           edge_set_name: tfgnn.EdgeSetName)
 -> tfgnn.Field:

    messages = tfgnn.broadcast_node_to_edges(
        graph,
        edge_set_name,
        tfgnn.SOURCE,
        feature_name=tfgnn.DEFAULT_STATE_NAME)
    weights = graph.edge_sets[edge_set_name]['weight']
    weighted_messages = tf.expand_dims(weights, -1) * messages
    pooled_messages = tfgnn.pool_edges_to_node(
        graph,
        edge_set_name,
        tfgnn.TARGET,
        reduce_type='sum',
        feature_value=weighted_messages)
    return pooled_messages


请注意,即使卷积是在只考虑源节点和目标节点的情况下编写的,TF-GNN 仍可确保它适用并可以无缝处理异构图(具有各种类型的节点和边)。

安装

这是目前安装 tensorflow_gnn 的唯一方法。强烈建议使用虚拟环境。

Clone tensorflow_gnn:

$> git clone https://github.com/tensorflow/gnn.git tensorflow_gnn


安装 TensorFlow:

$> pip install tensorflow


安装 Bazel:Bazel 需要构建包的源代码。安装步骤请参考:https://docs.bazel.build/versions/main/install.html

安装 GraphViz:这个包使用 GraphViz 作为可视化工具,安装因操作系统而异,例如 Ubuntu:

$> sudo apt-get install graphviz graphviz-dev


安装 tensorflow_gnn:

$cd tensorflow_gnn && python3 -m pip install .


参考链接:
https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html

详解NVIDIA TAO系列分享第2期:

基于Python的口罩检测模块代码解析——快速搭建基于TensorRT和NVIDIA TAO Toolkit的深度学习训练环境


第2期线上分享将介绍如何利用NVIDIA TAO Toolkit,在Python的环境下快速训练并部署一个人脸口罩监测模型,同时会详细介绍如何利用该工具对模型进行剪枝、评估并优化。

TAO Toolkit 内包含了150个预训练模型,用户不用从头开始训练,极大地减轻了准备样本的工作量,让开发者专注于模型的精度提升。本次分享摘要如下:
  • NVIDIA TAO Toolkit的独到特性
  • TensorRT 8.0的最新特性
  • 利用TAO Toolkit快速训练人脸口罩检测模型
  • 利用TensorRT 快速部署人脸口罩检测模型

点击 阅读原文 ,报名直播吧。


© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

登录查看更多
0

相关内容

专知会员服务
83+阅读 · 2021年8月25日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
82+阅读 · 2020年11月19日
最新《图神经网络实用指南》2020论文,28页pdf
专知会员服务
221+阅读 · 2020年10月17日
专知会员服务
132+阅读 · 2020年8月24日
最新《图神经网络模型与应用》综述论文
专知会员服务
293+阅读 · 2020年8月2日
【WWW2020】DGL深度图神经网络实战教程,PPT+代码
专知会员服务
175+阅读 · 2020年4月12日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
推出 TensorFlow 图神经网络 (GNNs)
谷歌开发者
0+阅读 · 2021年12月30日
推出 TensorFlow 图神经网络(GNNs)
TensorFlow
0+阅读 · 2021年12月29日
TensorFlow官方出了个GNN框架,YYDS!
图与推荐
0+阅读 · 2021年11月20日
TF-Ranking 中的 Keras API 让 LTR 模型构建更轻松
TensorFlow
2+阅读 · 2021年8月23日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
TF Boys必看!一文搞懂TensorFlow 2.0新架构!
引力空间站
18+阅读 · 2019年1月16日
图神经网络概述第三弹:来自IEEE Fellow的GNN综述
机器之心
46+阅读 · 2019年1月7日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
27+阅读 · 2020年6月19日
已删除
Arxiv
32+阅读 · 2020年3月23日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
专知会员服务
83+阅读 · 2021年8月25日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
82+阅读 · 2020年11月19日
最新《图神经网络实用指南》2020论文,28页pdf
专知会员服务
221+阅读 · 2020年10月17日
专知会员服务
132+阅读 · 2020年8月24日
最新《图神经网络模型与应用》综述论文
专知会员服务
293+阅读 · 2020年8月2日
【WWW2020】DGL深度图神经网络实战教程,PPT+代码
专知会员服务
175+阅读 · 2020年4月12日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
相关资讯
推出 TensorFlow 图神经网络 (GNNs)
谷歌开发者
0+阅读 · 2021年12月30日
推出 TensorFlow 图神经网络(GNNs)
TensorFlow
0+阅读 · 2021年12月29日
TensorFlow官方出了个GNN框架,YYDS!
图与推荐
0+阅读 · 2021年11月20日
TF-Ranking 中的 Keras API 让 LTR 模型构建更轻松
TensorFlow
2+阅读 · 2021年8月23日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
TF Boys必看!一文搞懂TensorFlow 2.0新架构!
引力空间站
18+阅读 · 2019年1月16日
图神经网络概述第三弹:来自IEEE Fellow的GNN综述
机器之心
46+阅读 · 2019年1月7日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
27+阅读 · 2020年6月19日
已删除
Arxiv
32+阅读 · 2020年3月23日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Top
微信扫码咨询专知VIP会员