编辑:陈萍
高效且友好的 TensorFlow GNN 库。
高级 keras 风格的 API 用于创建 GNN 模型,可以很容易地与其他类型的模型组合。GNN 通常与排序、深度检索结合使用或与其他类型的模型(图像、文本等)混合使用;
定义良好的模式用来声明图拓扑结构,以及验证工具。该模式描述了其训练数据的大小,并用于指导其他工具;
GraphTensor 复合张量类型,可以用来保存图数据,也可以进行批处理,并具有可用的图操作例程;
GraphTensor 结构操作库:在节点和边缘上进行各种有效的 broadcast 和 pooling 操作,以及提供相关操作的工具;标准 baked 卷积库,机器学习工程师、研究人员可以对其轻松扩展;高级 API 可以帮助工程师快速构建 GNN 模型而不必担心细节;
模型可以从图训练数据编码,以及用于将此数据解析为数据结构的库中提取各种特征。
import tensorflow as tf
import tensorflow_gnn as tfgnn
# Model hyper-parameters:
h_dims = {'user': 256, 'movie': 64, 'genre': 128}
# Model builder initialization:
gnn = tfgnn.keras.ConvGNNBuilder(
lambda edge_set_name: WeightedSumConvolution(),
lambda node_set_name: tfgnn.keras.layers.NextStateFromConcat(
tf.keras.layers.Dense(h_dims[node_set_name]))
)
# Two rounds of message passing to target node sets:
model = tf.keras.models.Sequential([
gnn.Convolve({'genre'}), # sends messages from movie to genre
gnn.Convolve({'user'}), # sends messages from movie and genre to users
tfgnn.keras.layers.Readout(node_set_name="user"),
tf.keras.layers.Dense(1)
])
class WeightedSumConvolution(tf.keras.layers.Layer):
"""Weighted sum of source nodes states."""
def call(self, graph: tfgnn.GraphTensor,
edge_set_name: tfgnn.EdgeSetName) -> tfgnn.Field:
messages = tfgnn.broadcast_node_to_edges(
graph,
edge_set_name,
tfgnn.SOURCE,
feature_name=tfgnn.DEFAULT_STATE_NAME)
weights = graph.edge_sets[edge_set_name]['weight']
weighted_messages = tf.expand_dims(weights, -1) * messages
pooled_messages = tfgnn.pool_edges_to_node(
graph,
edge_set_name,
tfgnn.TARGET,
reduce_type='sum',
feature_value=weighted_messages)
return pooled_messages
$> git clone https://github.com/tensorflow/gnn.git tensorflow_gnn
$> pip install tensorflow
$> sudo apt-get install graphviz graphviz-dev
$> cd tensorflow_gnn && python3 -m pip install .
详解NVIDIA TAO系列分享第2期:
基于Python的口罩检测模块代码解析——快速搭建基于TensorRT和NVIDIA TAO Toolkit的深度学习训练环境
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:content@jiqizhixin.com