多位专家探讨基因大数据深度挖掘所面临的挑战

2017 年 11 月 16 日 未来产业促进会


点击上方“公众号”可以订阅哦!


作为一种新型基因检测技术,基因测序能从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性、个体的行为特征及行为合理性。基因测序技术能锁定个人病变基因,予以提前预防和治疗。正因如此,今年华大基因的上市,就引发了资本市场的热烈追捧。

在日前于北京召开的第四届全国功能基因组学高峰论坛上,众多与会专家就基因技术发展方向及面临的机遇与挑战进行了深入交流。

基因测序用途广泛

当前,基因测序相关产品和技术已由实验室研究演变到临床应用。有学者甚至认为,基因测序技术可能是下一个改变世界的技术,因为在自然界乃至人类世界,基因测序都有着无可替代的作用。

今年5月,由中科院昆明植物所牵头的联合科研团队通过基因组建库与测序等一系列关键技术,攻克了茶树基因组测序难题,在国际上率先获得高质量茶树基因组序列。

中科院昆明植物所研究员高立志坦言,这对揭示决定茶叶适制性、风味和品质以及茶树全球生态适应性的遗传基础,都有重要促进作用。

再比如,华中农业大学张献龙团队对棉花栽培品种和野生品种进行了全基因组重测序,发现棉花在人工选择过程中存在明显的亚基因组不对称选择过程。“10多年的功能基因组研究发现20多个与重要性状形成有关的基因,这将在棉花分子设计育种中发挥重要作用。”张献龙团队成员王茂军告诉记者。

基因测序对人类医学发展也有重要作用。中科院生物物理所研究员、中科院院士陈润生介绍,基于组学大数据的精准医疗作为划时代的产业,已被各国列入战略规划。它有着直接解决当前医疗行业面临的诸多困难的潜力,在接下来的几年将会爆发式增长,预计到2018年全球市场规模将达2238亿美元。

基因大数据时代开启

华大基因科技服务原负责人、北京百迈客生物科技有限公司董事长郑洪坤指出,随着基因测序技术的不断发展和成本的大幅下降,以及国家在基因研究领域的大力支持和投入,如今,科学家在基因领域的研究越来越深入,基因大数据的积累越来越多,“全世界累计花费数百亿,已经产出了近20Pb的海量基因数据”。

“测序技术的发展让基因数据以远超摩尔定律的速度在积累,海量数据对科研工作者提出了新的要求。”中科院北京基因组所研究员章张表示。

章张介绍,据不完全统计,我国生命组学数据产量约占全球的40%,但这些宝贵的数据资源却交给了他人管理,主要原因在于,我国长期缺乏涵盖多组学数据资源的生物大数据中心。为此,中科院北京基因组所生命与健康大数据中心围绕国家精准医学和重要战略生物资源的组学数据,建立海量生命组学大数据储存、整合与挖掘分析研究体系,并已初步建成生命与健康多组学数据汇交与共享平台。

亟待深度挖掘与科学解读

与国外相比,目前国内的基因组学、基因测序的推进速度并不慢。从学术角度看,中科院北京基因组所、农科院基因组所等机构实力雄厚,华大基因、百迈客等一批从事基因测序的相关企业也在逐渐成长。但在专家们看来,基因组学面临的挑战依然不小,因为随着信息、仪器等各个领域的快速发展,数据总量越来越多,加上各种新指标、参数的加入,数据也变得越来越复杂。

“在海量测序结果面前,数据深度挖掘和解读方面存在的严峻挑战日益明显。如何在基因大数据时代利用好这些数据资源,已经成为生物科研新时代的重要课题。”郑洪坤表示。

陈润生也指出,当前,快速积累的数据并未得到高效解读;高度异质化数据之间的整合尚处于起步阶段。样品端的挑战直接威胁到数据质量。但他同时表示,“这些挑战往往意味着机遇,大量未解读的数据同时也带来了无限创新的可能。”

来源:中国科学报


注:投稿请电邮至124239956@qq.com ,合作 或 加入未来产业促进会请加:www13923462501 微信号或者扫描下面二维码:



文章版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将删除内容或协商版权问题!联系QQ:124239956


登录查看更多
1

相关内容

从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
专知会员服务
125+阅读 · 2020年3月26日
《人工智能2020:落地挑战与应对 》56页pdf
专知会员服务
197+阅读 · 2020年3月8日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
98+阅读 · 2019年12月29日
2019中国硬科技发展白皮书 193页
专知会员服务
83+阅读 · 2019年12月13日
【大数据白皮书 2019】中国信息通信研究院
专知会员服务
138+阅读 · 2019年12月12日
解读《中国新一代人工智能发展报告2019》
走向智能论坛
32+阅读 · 2019年6月5日
清华178页深度报告:一文看懂AI数据挖掘
人工智能学家
10+阅读 · 2019年2月18日
2017-2018年抗肿瘤药物行业研究报告
行业研究报告
7+阅读 · 2018年11月1日
【学科发展报告】生物信息学
中国自动化学会
11+阅读 · 2018年10月22日
深度|拥抱人工智能报告:中国未来就业的挑战与应对
机器人大讲堂
6+阅读 · 2018年9月24日
【深度】基于医疗大数据和AI技术的影像组学及其应用丨田捷研究员
中国科学院自动化研究所
6+阅读 · 2017年7月20日
人工智能与医疗,正成为人工智能时代重头戏
机器之能
6+阅读 · 2017年7月10日
领英发布《全球AI领域人才报告》,揭示全球AI人才图谱
微软研究院AI头条
3+阅读 · 2017年7月10日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
专知会员服务
125+阅读 · 2020年3月26日
《人工智能2020:落地挑战与应对 》56页pdf
专知会员服务
197+阅读 · 2020年3月8日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
98+阅读 · 2019年12月29日
2019中国硬科技发展白皮书 193页
专知会员服务
83+阅读 · 2019年12月13日
【大数据白皮书 2019】中国信息通信研究院
专知会员服务
138+阅读 · 2019年12月12日
相关资讯
解读《中国新一代人工智能发展报告2019》
走向智能论坛
32+阅读 · 2019年6月5日
清华178页深度报告:一文看懂AI数据挖掘
人工智能学家
10+阅读 · 2019年2月18日
2017-2018年抗肿瘤药物行业研究报告
行业研究报告
7+阅读 · 2018年11月1日
【学科发展报告】生物信息学
中国自动化学会
11+阅读 · 2018年10月22日
深度|拥抱人工智能报告:中国未来就业的挑战与应对
机器人大讲堂
6+阅读 · 2018年9月24日
【深度】基于医疗大数据和AI技术的影像组学及其应用丨田捷研究员
中国科学院自动化研究所
6+阅读 · 2017年7月20日
人工智能与医疗,正成为人工智能时代重头戏
机器之能
6+阅读 · 2017年7月10日
领英发布《全球AI领域人才报告》,揭示全球AI人才图谱
微软研究院AI头条
3+阅读 · 2017年7月10日
相关论文
Top
微信扫码咨询专知VIP会员