GAN正在成为新的深度学习

2018 年 6 月 9 日 新智元





  新智元报道  

来源:Jordi Pont-Tuset,Google Research

编辑:文强


【新智元导读】计算机视觉顶会CVPR 2018召开在即,从接收的论文看,这届会议展现出了怎样的趋势?你不要不信,生成对抗网络GAN,正在成为新的“深度学习”。


又到了一年一度CVPR的时节。


当被接收的论文列表公布以后(点击这里查看所有论文列表),爱统计趋势的我们又有很多事情可以做了。


这一次,Google Research的研究科学家Jordi Pont-Tuset做了一个统计,根据论文题目,看深度学习的发展趋势。结果,他发现生成对抗网络(GAN)强势出击,大有取代“深度学习”(Deep Learning)之势。


下面这张图展示了CVPR 2018的论文题目中,关键词GAN、Deep,以及LSTM的对比:



可以看出,普通的“深度学习”已经在走下坡路,而且趋势明显。Jordi Pont-Tuset认为,这很可能是研究人员已经见惯不惯了。


与此同时,GAN则大幅抬头,有8%的论文标题中含有GAN(相比2017年增长了2倍多),已经不能说是少数,而是相当有分量的一个方向了。


此外,LSTM也出现下滑,可能是越来越多人开始关注并使用Attention的方法。

“深度学习”趋于饱和,GAN强势飞升


GAN的上升趋势并不是从CVPR 2018才开始的。下面这张图展示了从2013年到2017年CVPR期间,GAN(以及LSTM)在CVPR、ICCV和ECCV这三大计算机视觉顶会论文标题中出现的频次。统计者依然是Jordi Pont-Tuset。



尽管占比的绝对值不高(在2017年时为2.5%),但可以发现GAN从CVPR-16开始一飞冲天的趋势。


这种趋势在随后举行的ICCV 2017上更加明显,GAN在ICCV-17上已经超越了LSTM,并且占比达到了4%。



再来看“深度学习”,三大CV顶会的数据表明,历经2014年到2016年的火爆,从2017年开始,虽然还在增长(CVPR的稍微多一些),但都已趋于饱和。



GAN是新的“深度学习”?


需要指出,这里统计的仅仅是三大计算机视觉会议接收论文的标题里的关键词。


就像Jordi Pont-Tuset推测的那样,普通的“深度学习”可能已经为人熟知,如今在研究领域开始往更细的、更具体的方向发展,比如GAN。


生成对抗网络(Generative Adversarial Nets)在 Ian Goodfellow 等人2014年的论文《Generative Adversarial Nets》中提出,是非监督学习的一种方法,通过让两个神经网络相互博弈的方式进行学习。


GAN结构示意。来源:Slinuxer


生成对抗网络由一个生成网络(Generator)与一个判别网络(Discriminator)组成。生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本。判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来。而生成网络则要尽可能地欺骗判别网络。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。生成对抗网络常用于生成以假乱真的图片。此外,该方法还被用于生成视频、三维物体模型等。


现在,《Generative Adversarial Nets》这篇论文的引用数量已经达到了3363次。



在一次Quora问答直播中,Yann LeCun表示,生成对抗性网络是近十年来最有趣的想法,是人工智能最值得期待的算法之一。


去年在接受吴恩达的采访时,Ian Goodfellow曾经说,GAN是生成模型的一种,实际上 GAN 能做的事情,很多其他生成模型也能做,如果GAN的训练能稳定下来,甚至像深度学习那么可靠,那么GAN就能真正发展起来。如果不能,那么GAN 将会被其他方法所取代。他有大约 40% 的时间都用在稳定 GAN 上面。


至少从这届CVPR看,GAN被取代的情况还完全不存在。


现在,有很多针对GAN的研究,除了Ian Goodfellow所在的谷歌和他之前所在的OpenAI,FAIR/NYU也是一大重镇。实际上,是FAIR/NYU最先把GAN带进了我们的视野,提出了LAPGAN,那是GAN第一次生成了逼真的高清图像,也是第一次得到媒体曝光。


另外一个重要阵营是伯克利+英伟达,他们专注超高清逼真图像和视频,无监督翻译,等等。伯克利的CycleGAN,利用对偶学习并结合GAN机制来优化生成图片的效果。英伟达则采取“渐进式生成”技术训练GAN,让计算机可以生成1024*1024大小的高清图片,几乎可以以假乱真。


除了图像生成,GAN的应用也已经拓展到了NLP和Robot Learning。


Ian Goodfellow在去年一次问答中表示,GAN是使用强化学习来解决生成建模问题的一种方式。“GAN的不同之处在于,奖励函数对行为是完全已知和可微分的,奖励是非固定的,以及奖励是Agent的策略的一个函数。”Goodfellow说:“我认为GAN基本上可以说就是强化学习。”


资料来源

1、CVPR 关键词统计:http://jponttuset.cat/are-gans-the-new-deep/

2、Ian Goodfellow问答:https://fermatslibrary.com/arxiv_comments?url=https%3A%2F%2Farxiv.org%2Fpdf%2F1406.2661.pdf




【加入社群】


新智元 AI 技术 + 产业社群招募中,欢迎对 AI 技术 + 产业落地感兴趣的同学,加小助手微信号: aiera2015_3  入群;通过审核后我们将邀请进群,加入社群后务必修改群备注(姓名 - 公司 - 职位;专业群审核较严,敬请谅解)。


登录查看更多
7

相关内容

GAN:生成性对抗网,深度学习模型的一种,在神经网络模型中引入竞争机制,非常流行。
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
专知会员服务
107+阅读 · 2020年5月21日
【综述】金融领域中的深度学习,附52页论文下载
专知会员服务
163+阅读 · 2020年2月27日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
王飞跃教授:生成式对抗网络GAN的研究进展与展望
算法与数学之美
12+阅读 · 2019年2月16日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
【干货】最新GAN教程,153PPT附代码
GAN生成式对抗网络
12+阅读 · 2018年9月18日
微软剑桥研究院153页最新GAN教程(附代码)
中国人工智能学会
7+阅读 · 2018年9月11日
Ian Goodfellow:你的GAN水平我来打分
机器之心
4+阅读 · 2018年8月17日
【GAN】生成式对抗网络GAN的研究进展与展望
产业智能官
12+阅读 · 2017年8月31日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Seeing What a GAN Cannot Generate
Arxiv
8+阅读 · 2019年10月24日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
5+阅读 · 2019年4月25日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
王飞跃教授:生成式对抗网络GAN的研究进展与展望
算法与数学之美
12+阅读 · 2019年2月16日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
【干货】最新GAN教程,153PPT附代码
GAN生成式对抗网络
12+阅读 · 2018年9月18日
微软剑桥研究院153页最新GAN教程(附代码)
中国人工智能学会
7+阅读 · 2018年9月11日
Ian Goodfellow:你的GAN水平我来打分
机器之心
4+阅读 · 2018年8月17日
【GAN】生成式对抗网络GAN的研究进展与展望
产业智能官
12+阅读 · 2017年8月31日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
相关论文
Seeing What a GAN Cannot Generate
Arxiv
8+阅读 · 2019年10月24日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
5+阅读 · 2019年4月25日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员