来源:专知
【导读】Sebastian Nowozin在机器学习夏季课程(MLSS 2018年9月)做了关于GAN的教学,153页PPT详尽的解释了GAN的发展脉络和最新进展,此外他所提供原版大小为286MB 的pptx中包含大量动画效果,对课程的理解很有帮助。
Sebastian Nowozin 是微软剑桥研究院首席研究员,专注于无监督于表示学习。他在 GAN 领域做了大量的工作,同时也是著名的 f-GAN 的作者。
在训练 GAN 方面似乎有两三个阵营:第一个当然就是 GAN 的发明 Ian Goodfellow 以及他所供职的 OpenAI 和谷歌的一帮研究人员;第二个强大的阵营也就是以这篇教程作者 Sebastian Nowozin 为代表的微软阵营;第三就是其他了。
此次教程主要有以下几个部分:
概率模型
GANs 的几个示范应用
评价原则
GAN 模型
差异性与 f-GAN 家族
基于积分概率度量 (IPM) 的 GAN: MMD
基于积分概率度量 (IPM) 的 GAN: Wasserstein GANs
问题与如何修正:模式崩溃 (modecollapse) 与不稳定性(Instability)
隐式模型
开放性研究问题
GAN 网络是近两年深度学习领域的新秀,一时风头无两。从计算机视觉顶会盛会 CVPR 2018 接受的论文统计就可见一斑:根据 Google Research 的研究科学家 Jordi Pont-Tuset 做的一个统计,它通过查看这些论文的类型,看到了未来深度学习的发展趋势。结果,他发现生成对抗网络(GAN)强势出击,大有取代 “深度学习”(Deep Learning)之势。
下面这张图展示了 CVPR 2018 的论文题目中,关键词 GAN、Deep,以及 LSTM 的对比:
在普通的 “深度学习” 走下坡路的同时,GAN 慢慢的成为新宠,统计显示有 8% 的论文标题中含有 GAN(这一数据相比 2017 年增长了 2 倍多)。
此外用尽字母表的各种 GAN 的变体 X-GAN 的论文数量也是急剧增加:
参考链接:
https://github.com/nowozin/mlss2018-madrid-gan
http://www.nowozin.net/sebastian/
附 PPT 全文:
(本文转载自公众号专知:Quan_Zhuanzhi,点击原文链接查看原文。)
☞ OpenPV平台发布在线的ParallelEye视觉任务挑战赛
☞【学界】OpenPV:中科院研究人员建立开源的平行视觉研究平台
☞【学界】ParallelEye:面向交通视觉研究构建的大规模虚拟图像集
☞【CFP】Virtual Images for Visual Artificial Intelligence
☞【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望
☞【智能自动化学科前沿讲习班第1期】王飞跃教授:生成式对抗网络GAN的研究进展与展望
☞【智能自动化学科前沿讲习班第1期】王坤峰副研究员:GAN与平行视觉
☞【重磅】平行将成为一种常态:从SimGAN获得CVPR 2017最佳论文奖说起
☞【学界】Ian Goodfellow等人提出对抗重编程,让神经网络执行其他任务
☞【学界】六种GAN评估指标的综合评估实验,迈向定量评估GAN的重要一步
☞【资源】T2T:利用StackGAN和ProGAN从文本生成人脸
☞【学界】 CVPR 2018最佳论文作者亲笔解读:研究视觉任务关联性的Taskonomy
☞【业界】英特尔OpenVINO™工具包为创新智能视觉提供更多可能
☞【学界】ECCV 2018: 对抗深度学习: 鱼 (模型准确性) 与熊掌 (模型鲁棒性) 能否兼得