谷歌大脑QT-Opt算法,机器人探囊取物成功率96%,Jeff Dean大赞

2018 年 6 月 29 日 量子位
郭一璞 发自 凹非寺 
量子位 报道 | 公众号 QbitAI

用于工业生产中的普通机器人,往往只会“给鸡抓鸡,给狗抓狗”,像一个对生活失去了向往的流水线工人,重复着日复一日不用动脑的苦劳力。

但,谷歌大脑昨天发了一个新的算法,让这些穷苦的机械臂开始从事“脑力劳动”:

从一群物品中,抓起需要的东西

比如从拼好的积木组合里,抓单个积木:



所使用的方法是深度强化学习,将大规模分布式优化和新型拟合深度Q学习算法——QT-Opt相结合,来让机器人从过去的每一次训练中学习,获取经验。

7个葫芦娃的4个月修炼

这次训练的参与“队员”有7名,他们用10个GPU开始训练:

 一根藤上7个机器人

每个机器人由一个带双指夹具的机械臂和一个RGB摄像头组成:



为了让机器人尽快get新的探囊取物技能,谷歌大脑的工作人员准备了1000样不同的物品用来训练:



仔细看一眼,其中包括各种形状、大小、材质不一的物体:




训练的过程首先从工作人员手动设计的策略开始,逐步切换到深度强化学习模型。

从论文上发现,原理大概是这样的:



学有所成

经过4个月的训练后,7位机器人迎来了他们的“考试”:成绩不错,在700次试验中,机器人找东西抓起来的成功率高达96%,比此前监督学习方法78%的成功率提升了很多。

Jeff Dean觉得它们棒棒的:



 凌晨4点的北京,Jeff老师发推夸奖自家机器人

除了提升准确率之外,经过QT-Opt算法训练过的机器人还主动get了4个新技能:

会破除阻碍

如果目标物体和其他东西连在一起,机器人会主动把它分开然后抓取。

比如前面示范的抓积木,机器人可以把影响自己发力的其他积木推开,再抓自己需要的那块积木。

“筷功”强

如果碰到难抓的东西,比如外形奇特或是外表光滑的物品,机器人会分析角度,重新定位,然后牢牢抓住不松手。



随手抓也要分析挑选

如果机器人一下子抓住了一堆东西,它可以自己选出需要的物品,在举起手臂之前牢牢的抓住它。

抢我的一定抢回来

如果人为的把机器人已经抓起来的物体拿掉,它还会锲而不舍的再抓一遍:

重要的是,以上这些技能都不是人为设置的,均是在训练过程中,机器人自行get到的。

最后,谷歌还提供了一个视频,来讲述7位机器人盆友的心路历程:


 《谷歌大脑:机器人进化论》

最后,附论文传送门~

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

作者:Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, Sergey Levine

谷歌博客地址:

https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html

arXiv:

https://arxiv.org/abs/1806.10293

加入社群

量子位AI社群18群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot8入群;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进群请加小助手微信号qbitbot8,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



登录查看更多
4

相关内容

斯坦福2020硬课《分布式算法与优化》
专知会员服务
120+阅读 · 2020年5月6日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
139+阅读 · 2020年3月1日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
谷歌机器学习速成课程中文版pdf
专知会员服务
146+阅读 · 2019年12月4日
斯坦福&谷歌Jeff Dean最新Nature论文:医疗深度学习技术指南
听完了1000+首古风歌曲,我发现自己也能火
PingWest品玩
4+阅读 · 2019年6月2日
深度强化学习入门,这一篇就够了!
机器学习算法与Python学习
27+阅读 · 2018年8月17日
AutoML—降低机器学习门槛的利器
深度学习
8+阅读 · 2018年1月29日
LibRec 每周算法:Kaggle竞赛利器之xgboost
LibRec智能推荐
15+阅读 · 2017年8月24日
VIP会员
相关资讯
听完了1000+首古风歌曲,我发现自己也能火
PingWest品玩
4+阅读 · 2019年6月2日
深度强化学习入门,这一篇就够了!
机器学习算法与Python学习
27+阅读 · 2018年8月17日
AutoML—降低机器学习门槛的利器
深度学习
8+阅读 · 2018年1月29日
LibRec 每周算法:Kaggle竞赛利器之xgboost
LibRec智能推荐
15+阅读 · 2017年8月24日
Top
微信扫码咨询专知VIP会员