百万年薪AI工程师思维导图及书单

2018 年 5 月 25 日 七月在线实验室

还没有入行或者正在入门人工智能领域的程序员们,今天带来了一份人工智能思维导图,并附上学习路径书单,希望对于迷茫的你有所帮助。

技术基础篇

入门级算法

《算法谜题》

【美】Anany Levitin 著

算法是计算机科学领域最重要的基石之一。算法谜题,就是能够直接或间接地采用算法来加以解决的谜题。求解算法谜题是培养和锻炼算法思维能力一种最有效和最有乐趣的途径。 

本书是一本经典算法谜题的合集。本书包括了一些古已有之的谜题,数学和计算机科学有一部分知识就发源于此。本书中还有一些较新的谜题,其中有一部分谜题被用作知名IT企业的面试题。全书可分为4个部分,分别是概览、谜题、提示和答案。概览介绍了算法设计的通用策略和算法分析的技术,还附带有不少的实例。谜题部分将谜题按照简单、中等难度和较难三个层级分别列出。提示部分依次给出谜题提示,帮助读者找到正确的解题方向,同时仍然为读者留下了独立求解的空间。答案部分则给出了谜题的详细解答。 


《编程之法:面试和算法心得》

July 

蜕变于CSDN技术博客“结构之法算法之道”,内容涉及面试、算法、机器学习三大主题;作者数年的积累成果;进入IT行业求职笔试和面试宝典

书中的每道编程题目都给出了多种思路、多种解法,不断优化、逐层递进。第1章至第6章分别阐述字符串、数组、树、查找、动态规划、海量数据处理等相关的编程面试题和算法,第7章介绍机器学习的两个算法—K近邻和SVM。书中的每一道题都是面试的高频题目,反复出现在近5年各大公司的笔试和面试中,对面试备考有着极强的参考价值。


技术基础篇

Python编程

Python核心编程(第3版)

【美】Wesley Chun(卫斯理 春)著

畅销经典的Python书,兼顾Python2和Python3,Python开发人员的案头常备

本书涵盖了成为一名技术全面的Python开发人员所需的一切内容。本书讲解了应用开发相关的多个领域,而且书中的内容可以立即应用到项目开发中。此外,本书还包含了一些使用Python 2和Python 3编写的代码案例,以及一些代码移植技巧。有些代码片段甚至无须修改就可以运行在Python 2.x或Python 3.x上。


Python程序设计(第3版)

【美】John Zelle(策勒)著 

Python之父作序推荐 ,Python 3 编程入门经典。本书以Python语言为工具教授计算机程序设计。本书强调解决问题、设计和编程是计算机科学的核心技能。本书特色鲜明、示例生动有趣、内容易读易学,适合Python入门程序员阅读,也适合高校计算机专业的教师和学生参考。 


机器学习算法篇

深度学习、神经网络、贝叶斯

《深度学习》

【加】Aaron Courville(亚伦·库维尔), 【加】Yoshua Bengio(约书亚·本吉奥), 【美】Ian Goodfellow(伊恩·古德费洛)

AI圣经!深度学习领域奠基性的经典畅销书长期位居美亚AI和机器学习类图书榜首!所有数据科学家和机器学习从业者的bi读图书!特斯拉CEO埃隆·马斯克等国内外众多专家推荐!

深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。因为计算机能够从经验中获取知识,所以不需要人类来形式化地定义计算机需要的所有知识。层次概念允许计算机通过构造简单的概念来学习复杂的概念,而这些分层的图结构将具有很深的层次。本书会介绍深度学习领域的许多主题。

 

《Python机器学习实践指南》

【美】Alexander T. Combs 

机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。

本书结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致。 全书共有10 章。第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、IPO 市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。 本书适合Python 程序员、数据分析人员、对算法感兴趣的读者、机器学习领域的从业人员及科研人员阅读。


《贝叶斯思维:统计建模的Python学习法》

【美】Allen B. Downey 

这本书帮助那些希望用数学工具解决实际问题的人们,仅有的要求可能就是懂一点概率知识和程序设计。而贝叶斯方法是一种常见的利用概率学知识去解决不确定性问题的数学方法,对于一个计算机专业的人士,应当熟悉其应用在诸如机器翻译,语音识别,垃圾邮件检测等常见的计算机问题领域。


《贝叶斯方法:概率编程与贝叶斯推断》

【美】Avi Pfeffer(艾维·费弗) 

人工智能领域的先驱、美国加州大学伯克利分校教授Stuart Russell作序推荐!一本不可思议的Scala概率编程实战书籍! 

概率推理是机器学习的核心方法之一,本书旨在向程序员,特别是Scala开发人员揭开概率建模的神秘面纱,以帮助程序员们高效地使用概率编程系统。 

借助概率编程系统,通过应用特定的算法,你的程序可以确定不同结论的概率。这意味着你可以预测未来事件,如销售趋势、计算机系统故障、试验结果和其他许多重要的关注点。   


机器学习框架篇

库和计算框架Tensorflow

《TensorFlow技术解析与实战》

李嘉璇 

TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。本书从深度学习的基础讲起,深入TensorFlow框架原理、模型构建、源代码分析和网络实现等各个方面。全书分为基础篇、实战篇和提高篇三部分。

领导“谷歌大脑”的工程师Jeff Dean发来寄语,李航、余凯等人工智能领域专家倾力推荐,包揽TensorFlow 1.1的新特性,技术内容全面,实战案例丰富,视野广阔,人脸识别、语音识别、图像和语音相结合等热点一应俱全,非常适合对深度学习和TensorFlow感兴趣的读者阅读。

《TensorFlow机器学习项目实战》

【阿根廷】Rodolfo Bonnin 

本书主要介绍如何使用TensorFlow库实现各种各样的模型,旨在降低学习门槛,并为读者解决问题提供详细的方法和指导。全书共10章,分别介绍了TensorFlow基础知识、聚类、线性回归、逻辑回归、不同的神经网络、规模化运行模型以及库的应用技巧。

本书适合想要学习和了解 TensorFlow 和机器学习的读者阅读参考。如果读者具备一定的C++和Python的经验,将能够更加轻松地阅读和学习本书。


机器学习技术实现篇

字符识别、自然语言处理、机器视觉、面部识别

《Python神经网络编程 

 [英] 塔里克·拉希德(Tariq Rashid) 著

当前,深度学习和人工智能的发展和应用给人们留下了深刻的印象。神经网络是深度学习和人工智能的关键元素,然而,真正了解神经网络工作机制的人少之又少。本书用轻松的笔触,一步一步揭示了神经网络的数学思想,并介绍如何使用Python编程语言开发神经网络。

本书的目标是让尽可能多的普通读者理解神经网络。读者将学习使用Python开发自己的神经网络,训练它识别手写数字,甚至可以与专业的神经网络相媲美。

《文本上的算法——深入浅出自然语言处理 

 路彦雄 著

微信整合搜索算法组组长路彦雄全新作品,深入浅出讲解自然语言处理和机器学习技术,微博总阅读量超30万次。

本书结合作者多年学习和从事自然语言处理相关工作的经验力图用生动形象的方式深入浅出地介绍自然语言处理的理论、方法和技术。本书抛弃掉繁琐的证明,提取出算法的核心本书前面章节介绍了学习机器学习需要掌握的一些数学基础,帮助读者尽快地掌握自然语言处理所必备的知识和技能。本书适合从事自然语言处理相关研究和工作的读者参考,尤其适合想要了解和掌握机器学习或者自然语言处理技术的读者阅读。


《OpenCV和Visual Studio图像识别应用开发 

 望熙贵, 望熙荣 著

OpenCV是可以在多平台下运行、并提供了多语言接口的一个库,实现了图像处理和计算机视觉方面的很多通用算法。

本书是介绍OpenCV结合Visual Studio进行图像识别和处理的编程指南。全书共11章,介绍了OpenCV和Visual Studio的安装设置,以及Core、HighGUI、ImgProc、Calib3d、Feature2d、Video、Objdetect、ML、Contrib等模块,涉及文字处理、照片处理、图像识别、OpenGL整合、硬件设备结合使用等众多方面的功能,最后还给出了综合应用的实例。

本书适合对于图像识别和处理技术感兴趣,并且想要学习OpenCV的应用和编程的读者阅读和参考。

《人脸识别原理及算法——动态人脸识别系统研究 

熊志勇, 沈理, 刘翼光 著

本书系统总结了人脸识别研究领域,填补国内有关该领域图书的空白,很好地总结了近年人脸识别算法研究成果,并提供了具体算法实现和研究结果,为该领域研究人员提供很好的借鉴。

读者通过阅读本书可以系统地学习人脸识别研究的方法,了解人脸识别研究的具体算法实现以及国内外相关技术的最新进展。动态人脸识别方法是作者在人脸识别研究方面的一个尝试和拓展,希望这部分内容能够为这一领域提供一种全新的研究分支。


《 Python自然语言处理 

Edward Loper, Ewan Klein, 【美】Steven Bird 著

本书是自然语言处理领域的一本实用入门指南,旨在帮助读者学习如何编写程序来分析书面语言。基于Python编程语言以及一个名为NLTK的自然语言工具包的开源库,但并不要求读者有Python编程的经验。全书共11章,按照难易程度顺序编排。

本书的实践性很强,包括上百个实际可用的例子和分级练习。本书可供读者用于自学,也可以作为自然语言处理或计算语言学课程的教科书,还可以作为人工智能、文本挖掘、语料库语言学等课程的补充读物。

《机器学习集训营 第五期》开始报名,BAT级工业项目实战辅导 + 一对一面试求职辅导,并提供一年GPU云实验平台免费使用;北京、上海、深圳、广州、杭州、沈阳、济南、郑州、成都、武汉、西安十一城同步开营,点击“阅读原文”试听

登录查看更多
37

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
《深度学习》圣经花书的数学推导、原理与Python代码实现
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
114+阅读 · 2020年1月1日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
《美团机器学习实践》—— 思维导图
图灵教育
22+阅读 · 2019年1月17日
年薪48万的程序员,他究竟做对了什么?
机器学习算法与Python学习
7+阅读 · 2018年12月28日
做机器学习和AI必备的42个数学知识点
AI前线
9+阅读 · 2018年12月6日
各编程领域最好的入门书籍
程序猿
27+阅读 · 2018年7月29日
数学思维与编程思维怎样可以完美的结合
算法与数学之美
6+阅读 · 2018年6月11日
1年开发经验,25万年薪的1个捷径,98%Python程序员都不知道
机器学习算法与Python学习
7+阅读 · 2018年5月23日
Python 杠上 Java、C/C++,赢面有几成?
CSDN
6+阅读 · 2018年4月12日
荐书丨Python数据分析从入门到精通
程序人生
18+阅读 · 2018年3月31日
一位数据分析师的书单
R语言中文社区
12+阅读 · 2017年10月28日
Python 书单:从入门到……
Linux中国
39+阅读 · 2017年8月6日
Arxiv
22+阅读 · 2019年11月24日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2019年2月26日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
《美团机器学习实践》—— 思维导图
图灵教育
22+阅读 · 2019年1月17日
年薪48万的程序员,他究竟做对了什么?
机器学习算法与Python学习
7+阅读 · 2018年12月28日
做机器学习和AI必备的42个数学知识点
AI前线
9+阅读 · 2018年12月6日
各编程领域最好的入门书籍
程序猿
27+阅读 · 2018年7月29日
数学思维与编程思维怎样可以完美的结合
算法与数学之美
6+阅读 · 2018年6月11日
1年开发经验,25万年薪的1个捷径,98%Python程序员都不知道
机器学习算法与Python学习
7+阅读 · 2018年5月23日
Python 杠上 Java、C/C++,赢面有几成?
CSDN
6+阅读 · 2018年4月12日
荐书丨Python数据分析从入门到精通
程序人生
18+阅读 · 2018年3月31日
一位数据分析师的书单
R语言中文社区
12+阅读 · 2017年10月28日
Python 书单:从入门到……
Linux中国
39+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员