哈佛用NBA比赛数据生成报道,评测各模型效果 | 数据集+论文+代码

2017 年 7 月 28 日 深度学习世界 量子位


安妮 编译整理
量子位出品 | 公众号 QbitAI

近日,哈佛大学的三名研究人员公开发表论文《Challenges of Data-to-Document Generation》,利用NBA的比赛结果数据尝试生成描述性文本,并测试了现有的神经网络模型生成文本效果如何。

这篇论文由Sam Wiseman、Stuart M. Shieber和Alexander M. Rush三人共同完成。Wiseman是工程和应用科学学院的博士生,Shieber和Rush同是是哈佛大学的NLP专家。

 从左到右依次为Wiseman、Shieber和Rush

论文摘要

神经模型已经在小型数据库生成短描述文本问题上取得了重大进展。在这篇文章中,我们用稍微复杂的数据库测试神经模型数据转文本的能力,探究现有方法在这个任务中的有效性。

首先,我们引入了一个记载了大量数据的语料库,里面也包含与数据匹配的描述性文档。随后,我们创建了一套用来分析表现结果的评估方法,并用当前的神经模型生成方法获取基线观测数据。

结果表明,这些模型可以生成流畅的文本,但看起来不像人类写的。此外,模板化的基线在某些指标上的表现会超过神经模型。

测试数据集

研究人员用两个数据集测试模型性能。

第一个数据集是来自体育网站ROTOWIRE的4853篇NBA比赛报道,包含NBA在2014年初到2017年3月之间的比赛。这个数据集被随机分为训练、验证和测试集,分别包含3398、727和728条报道。

第二个数据集来自体育网站SBNation,涵盖了10903篇从2006年底到2017年3月之间的报道。其中训练、验证和测试集中分别有7633、1635和1635条报道。

下面这张表格展示了数据集中可能被记录的信息——

 可能被记录的信息

测试结果

研究人员从ROTOWIRE数据库中抽取了以下数据,里面同时包含了比分数据和球员信息,让模型转化成文本。

根据上面的数据,神经模型生成了以下文字内容。虽然不如新闻报道有文采,但看起来还算流利。

扩展资料

最后,附送研究详细信息——

Paper地址:

https://arxiv.org/pdf/1707.08052.pdf

Dataset地址:

https://github.com/harvardnlp/boxscore-data

Code地址:

https://github.com/harvardnlp/data2text

【完】



点击下方“阅读原文”了解同声译APP
↓↓↓
登录查看更多
9

相关内容

【ICML2020-哈佛】深度语言表示中可分流形
专知会员服务
12+阅读 · 2020年6月2日
【IJCAI2020-CMU】结构注意力的神经抽象摘要
专知会员服务
21+阅读 · 2020年4月23日
论文浅尝 | XQA:一个跨语言开放域问答数据集
开放知识图谱
25+阅读 · 2019年9月11日
800万中文词,腾讯AI Lab开源大规模NLP数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年10月26日
自然语言处理领域公开数据集
炼数成金订阅号
8+阅读 · 2018年4月19日
Arxiv
7+阅读 · 2018年12月10日
Bidirectional Attention for SQL Generation
Arxiv
4+阅读 · 2018年6月21日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关资讯
论文浅尝 | XQA:一个跨语言开放域问答数据集
开放知识图谱
25+阅读 · 2019年9月11日
800万中文词,腾讯AI Lab开源大规模NLP数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年10月26日
自然语言处理领域公开数据集
炼数成金订阅号
8+阅读 · 2018年4月19日
相关论文
Arxiv
7+阅读 · 2018年12月10日
Bidirectional Attention for SQL Generation
Arxiv
4+阅读 · 2018年6月21日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
13+阅读 · 2017年12月5日
Top
微信扫码咨询专知VIP会员