推荐系统,对于我们来说并不陌生,可以说无处不在。抖音的视频推荐让我们欲罢不能,淘宝的猜你喜欢令大家流连忘返,网易云的每日歌单使我们沉浸其中。可见,推荐技术已经成为了业界的流量担当、变现神器,也成为了我们的生活小助手,渗透到生活的各个方面。
推荐系统的核心是推荐算法,其通过利用用户对项目的行为数据、用户画像以及物品属性来构建推荐模型,进而对用户的未来行为进行预测。
根据产品的存在形式可以分为:首页推荐、热门推荐和相关推荐等。
根据推荐技术的不同分为:基于内容的推荐、基于协同过滤的推荐、基于混合的推荐。
根据利用的信息不同可分为:协同过滤推荐、社会化推荐、兴趣点推荐、知识图推荐以及标签推荐等。
根据推荐任务不同可分为:评分预测和项目排序。
根据模型所利用假设不同分为:以KNN为代表的非训练的方法,以MF为代表的传统机器学习方法,以及以Wide&Deep模型为代表的深度学习推荐等。
Adomavicius et al. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE, 2005.
Zhu et al. Research Commentary on Recommendations with Side Information: A Survey and Research Directions. Electron. Commer. Res. Appl., 2019
Su et al. A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009.
Cacheda et al. Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM TWEB, 2011.
Shi et al. Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM COMPUT SURV, 2014.
Efthalia et al. Parallel and Distributed Collaborative Filtering: A Survey. Comput. Surv., 2016.
Burke et al. Hybrid Recommender Systems: Survey and Experiments. USER MODEL USER-ADAP, 2002.
Zhang et al. Tag-aware recommender systems: a state-of-the-art survey. J COMPUT SCI TECHNOL, 2011.
Tang et al. Social recommendation: a review. SNAM, 2013.
Yang et al. A survey of collaborative filtering based social recommender systems. COMPUT COMMUN, 2014.
Xu et al. Social networking meets recommender systems: survey. Int.J.Social Network Mining, 2015.
Liu et al. Survey of matrix factorization based recommendation methods by integrating social information. Journal of Software, 2018.
Chen et al. Recommender systems based on user reviews: the state of the art. USER MODEL USER-ADAP, 2015.
Yu et al. A survey of point-of-interest recommendation in location-based social networks. In Workshops at AAAI, 2015.
Muhammad et al. Cross Domain Recommender Systems: A Systematic Literature Review. ACM Comput. Surv, 2017.
Massimo et al. Sequence-Aware Recommender Systems. ACM Comput. Surv, 2018.
Shoujin et al. Sequential Recommender Systems: Challenges, Progress and Prospects. IJCAI, 2019.
Shoujin et al. A Survey on Session-based Recommender Systems. arXiv, 2019.
Zhang et al. Explainable Recommendation: A Survey and New Perspectives. Found. Trends Inf. Retr., 2020.
Dietmar et al. A Survey on Conversational Recommender Systems. arXiv, 2020.
Qingyu et al. A Survey on Knowledge Graph-Based Recommender Systems. arXiv, 2020.
Sriharsha et al. A Survey on Group Recommender Systems. J. Intell. Inf. Syst., 2020
Singhal et al. Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works. arXiv, 2017.
Zhang et al. Deep learning based recommender system: A survey and new perspectives. ACM Comput.Surv, 2018.
记得备注奥