作者:章华燕
编辑:田 旭
在第一篇文章《推荐算法综述》中我们说到,真正的推荐系统往往是多个推荐算法策略的组合使用,本文介绍的将会是推荐系统最古老的算法:基于内容的推荐算法(Content-Based Recommendations CB)。
CB是最早被使用的推荐算法,它的思想非常简单:根据用户过去喜欢的物品(本文统称为 item),为用户推荐和他过去喜欢的物品相似的物品。而关键就在于这里的物品相似性的度量,这才是算法运用过程中的核心。 CB最早主要是应用在信息检索系统当中,所以很多信息检索及信息过滤里的方法都能用于CB中。
举个简单的例子:在京东上购物的小伙伴们应该都知道,每当你进入任何一个物品页面的时候都会有一个“猜你喜欢”的栏目,这时候他就会根据你经常购买的物品给你推荐相似的物品。例如对我来说:我经常购买互联网类书籍,所以它就会给我推荐类似的书籍(当然这里只是举个例子,京东的推荐算法肯定不可能那么单一,但是可以肯定的是他肯定会用到最基础的CB推荐算法)。
CB的过程一般包括以下三步:
物品表示(Item Representation):为每个item抽取出一些特征(也就是item的content了)来表示此item;
特征学习(Profile Learning):利用一个用户过去喜欢(及不喜欢)的item的特征数据,来学习出此用户的喜好特征(profile);
生成推荐列表(Recommendation Generation):通过比较上一步得到的用户profile与候选item的特征,为此用户推荐一组相关性最大的item。
举个例子说明前面的三个步骤。随着今日头条的崛起,基于内容的文本推荐就盛行起来。在这种应用中一个item就是一篇文章。
第一步,我们首先要从文章内容中抽取出代表它们的属性。常用的方法就是利用出现在一篇文章中词来代表这篇文章,而每个词对应的权重往往使用信息检索中的tf-idf来计算。利用这种方法,一篇抽象的文章就可以使用具体的一个向量来表示了。
第二步,根据用户过去喜欢什么文章来产生刻画此用户喜好的特征向量了,最简单的方法可以把用户所有喜欢的文章对应的向量的平均值作为此用户的特征向量。比如我经常在今日头条阅读技术科技相关的文章,那么今日头条的算法可能会把我的Profile中的:“互联网”、“大数据”、“机器学习”、“数据挖掘”等关键词的权重设置的比较大。
这样,当我登录头条客户端的时候,他获取到我的用户Profile后,利用CB算法将我的个人Profile与文章Item的Profile的相似度(相似度的衡量可以用余弦相似度Cosine)进行计算,然后按相似度大小取最大的前N个篇文章作为推荐结果返回给我的推荐列表中。
接下来我们详细介绍下上面的三个步骤:
真实应用中的item往往都会有一些可以描述它的属性。这些属性通常可以分为两种:结构化的(structured)属性与非结构化的(unstructured)属性。所谓结构化的属性就是这个属性的意义比较明确,其取值限定在某个范围;而非结构化的属性往往其意义不太明确,取值也没什么限制,不好直接使用。比如在交友网站上,item就是人,一个item会有结构化属性如身高、学历、籍贯等,也会有非结构化属性(如item自己写的交友宣言,博客内容等等)。对于结构化数据,我们自然可以拿来就用;但对于非结构化数据(如文章),我们往往要先把它转化为结构化数据后才能在模型里加以使用。真实场景中碰到最多的非结构化数据可能就是文章了(如个性化阅读中)。下面我们就详细介绍下如何把非结构化的一篇文章结构化。
如何代表一篇文章在信息检索中已经被研究了很多年了,下面介绍的表示技术其来源也是信息检索,其名称为向量空间模型(Vector Space Model,简称VSM)。
记我们要表示的所有文章集合为
其中,
最终第k个词在文章j中对应的权重由如下公式获得:
做归一化的好处是不同文章之间的表示向量被归一到一个量级上,便于下面步骤的操作。
假设用户u已经对一些item给出了他的喜好判断,喜欢其中的一部分item,不喜欢其中的另一部分。那么,这一步要做的就是通过用户u过去的这些喜好判断,为他产生一个模型。有了这个模型,我们就可以根据此模型来判断用户u是否会喜欢一个新的item。所以,我们要解决的是一个典型的有监督分类问题,理论上机器学习里的分类算法都可以照搬进这里。
下面我们简单介绍下CB里常用的一些学习算法:
对于一个新的item,最近邻方法首先找用户u已经评判过并与此新item最相似的k个item,然后依据用户u对这k个item的喜好程度来判断其对此新item的喜好程度。这种做法和CF中的item-based kNN很相似,差别在于这里的item相似度是根据item的属性向量计算得到,而CF中是根据所有用户对item的评分计算得到。
对于这个方法,比较关键的可能就是如何通过item的属性向量计算item之间的两两相似度。对于结构化数据,相似度计算使用欧几里得距离;而如果使用向量空间模型(VSM)来表示item的话,则相似度计算可以使用cosine。
Rocchio算法是信息检索中处理相关反馈(Relevance Feedback)的一个著名算法。比如你在搜索引擎里搜“苹果”,当你最开始搜这个词时,搜索引擎不知道你到底是要能吃的水果,还是要不能吃的苹果,所以它往往会尽量呈现给你各种结果。当你看到这些结果后,你会点一些你觉得相关的结果(这就是所谓的相关反馈了)。然后如果你翻页查看第二页的结果时,搜索引擎可以通过你刚才给的相关反馈,修改你的查询向量取值,重新计算网页得分,把跟你刚才点击的结果相似的结果排前面。比如你最开始搜索“苹果”时,对应的查询向量是{“苹果” : 1}。而当你点击了一些与Mac、iPhone相关的结果后,搜索引擎会把你的查询向量修改为{“苹果” : 1, “Mac” : 0.8, “iPhone” : 0.7},通过这个新的查询向量,搜索引擎就能比较明确地知道你要找的是不能吃的苹果了。Rocchio算法的作用就是用来修改你的查询向量的:{“苹果” : 1} –> {“苹果” : 1, “Mac” : 0.8, “iPhone” : 0.7}。
在CB里,我们可以类似地使用Rocchio算法来获得用户u的profile
其中 wj表示item j的属性,Ir与 Inr 分别表示已知的用户u喜欢与不喜欢的item集合;而
在获得后,对于某个给定的item j,我们可以使用和的相似度来代表用户u对j的喜好度。
Rocchio算法的一个好处是可以根据用户的反馈实时更新,其更新代价很小。
正如在本节开头所说,本节要解决的是一个典型的有监督分类问题。所以各种有效的分类机器学习算法都可以用到这里,下面列举几个常用的分类算法:
决策树算法(Decision Tree, 简称DT)
当item的属性较少而且是结构化属性时,决策树一般会是个好的选择。这种情况下决策树可以产生简单直观、容易让人理解的结果。而且我们可以把决策树的决策过程展示给用户u,告诉他为什么这些item会被推荐。但是如果item的属性较多,且都来源于非结构化数据(如item是文章),那么决策树的效果可能并不会很好。
线性分类算法(Linear Classifer, 简称LC)
对于我们这里的二类问题,线性分类器(LC)尝试在高维空间找一个平面,使得这个平面尽量分开两类点。也就是说,一类点尽可能在平面的某一边,而另一类点尽可能在平面的另一边。
仍以学习用户u的分类模型为例。表示item j的属性向量,那么LC尝试在空间中找平面,使得此平面尽量分开用户u喜欢与不喜欢的item。其中的就是我们要学习的参数了。最常用的学习的方法就是梯度下降法了,其更新过程如下:
其中的上角标t表示第t次迭代,yuj表示用户u对item j的打分(例如喜欢则值为1,不喜欢则值为-1)。
和Rocchio算法一样,上面更新公式的好处就是它可以以很小的代价进行实时更新,实时调整用户u对应的 cu。
说到这里,很多童鞋可能会想起一些著名的线性分类器:Logistic Regression和Linear SVM等等,它们当然能胜任我们这里的分类任务。Linear SVM用在文本分类上能获得相当不错的效果。
如果item属性的每个分量都是0/1取值的话(如item为文章,的第k个分量为1表示词典中第k个词在item j中,为0表示第k个词不在item j中)。
素贝叶斯算法(Naive Bayes, 简称NB)
NB算法就像它的简称一样,牛逼!NB经常被用来做文本分类,它假设在给定一篇文章的类别后,其中各个词出现的概率相互独立。它的假设虽然很不靠谱,但是它的结果往往惊人地好。再加上NB的代码实现比较简单,所以它往往是很多分类问题里最先被尝试的算法。我们现在的profile learning问题中包括两个类别:用户u喜欢的item,以及他不喜欢的item。在给定一个item的类别后,其各个属性的取值概率互相独立。我们可以利用用户u的历史喜好数据训练NB,之后再用训练好的NB对给定的item做分类。
如果上一步Profile Learning中使用的是分类模型(如DT、LC和NB),那么我们只要把模型预测的用户最可能感兴趣的n个item作为推荐返回给用户即可。而如果Profile Learning中使用的直接学习用户属性的方法(如Rocchio算法),那么我们只要把与用户属性最相关的n个item作为推荐返回给用户即可。其中的用户属性与item属性的相关性可以使用如cosine等相似度度量获得。
下面说说基于内容推荐算法的优缺点。
CB的优点:
用户之间的独立性(User Independence):既然每个用户的profile都是依据他本身对item的喜好获得的,自然就与他人的行为无关。而CF刚好相反,CF需要利用很多其他人的数据。CB的这种用户独立性带来的一个显著好处是别人不管对item如何作弊(比如利用多个账号把某个产品的排名刷上去)都不会影响到自己。
好的可解释性(Transparency):如果需要向用户解释为什么推荐了这些产品给他,你只要告诉他这些产品有某某属性,这些属性跟你的品味很匹配等等。
新的item可以立刻得到推荐(New Item Problem):只要一个新item加进item库,它就马上可以被推荐,被推荐的机会和老的item是一致的。而CF对于新item就很无奈,只有当此新item被某些用户喜欢过(或打过分),它才可能被推荐给其他用户。所以,如果一个纯CF的推荐系统,新加进来的item就永远不会被推荐:( 。
CB的缺点:
item的特征抽取一般很难(Limited Content Analysis):如果系统中的item是文档(如个性化阅读中),那么我们现在可以比较容易地使用信息检索里的方法来“比较精确地”抽取出item的特征。但很多情况下我们很难从item中抽取出准确刻画item的特征,比如电影推荐中item是电影,社会化网络推荐中item是人,这些item属性都不好抽。其实,几乎在所有实际情况中我们抽取的item特征都仅能代表item的一些方面,不可能代表item的所有方面。这样带来的一个问题就是可能从两个item抽取出来的特征完全相同,这种情况下CB就完全无法区分这两个item了。比如如果只能从电影里抽取出演员、导演,那么两部有相同演员和导演的电影对于CB来说就完全不可区分了。
无法挖掘出用户的潜在兴趣(Over-specialization):既然CB的推荐只依赖于用户过去对某些item的喜好,它产生的推荐也都会和用户过去喜欢的item相似。如果一个人以前只看与推荐有关的文章,那CB只会给他推荐更多与推荐相关的文章,它不会知道用户可能还喜欢数码。
无法为新用户产生推荐(New User Problem):新用户没有喜好历史,自然无法获得他的profile,所以也就无法为他产生推荐了。当然,这个问题CF也有。
CB应该算是第一代的个性化应用中最流行的推荐算法了。但由于它本身具有某些很难解决的缺点(如上面介绍的第1点),再加上在大多数情况下其精度都不是最好的,目前大部分的推荐系统都是以其他算法为主(如CF),而辅以CB以解决主算法在某些情况下的不精确性(如解决新item问题)。但CB的作用是不可否认的,只要具体应用中有可用的属性,那么基本都能在系统里看到CB的影子。组合CB和其他推荐算法的方法很多(我很久以后会写一篇博文详细介绍之),最常用的可能是用CB来过滤其他算法的候选集,把一些不太合适的候选(比如不要给小孩推荐偏成人的书籍)去掉。
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市”、“智能驾驶”;新模式:“财富空间”、“数据科学家”、“赛博物理”、“供应链金融”。
官方网站:AI-CPS.NET
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com