TPAMI 2021|VideoDG:首个视频领域泛化模型

2021 年 12 月 31 日 专知

本文介绍TPAMI 2021的中稿论文:VideoDG: Generalizing Temporal Relations in Videos to Novel Domains。

作者:姚治宇*,王韫博*,王建民,俞士纶,龙明盛

链接:https://www.zhuanzhi.ai/paper/028b77e5d88a032032f2e567580b7d8d

代码:https://github.com/thuml/VideoDG

引言

传统的机器学习一般假设源领域(source domain)和目标领域(target domain)的数据分布符合独立同分布i.i.d假设。然而实际中,源领域和目标领域往往存在领域偏移(domain shift),即会有分布外Out of Distribution(OOD)情景出现。领域泛化(Domain Generalization)旨在仅通过使用源领域数据进行模型学习来实现在不可见的目标领域的OOD泛化。

领域泛化的研究已经经历了十年的发展,涵盖了各种图像应用,例如图像识别,图像分割等。然而对于视频方面的应用,比如视频动作识别,领域泛化却鲜有涉及。本文致力于探究视频领域泛化(video domain generalization)在动作识别问题中的应用,我们认为训练更具泛化性的动作识别模型对解决视频领域泛化问题至关重要。比如,不同的人执行相同的动作在不同的场景下,模型往往可能无法识别一个执行在新的环境的旧动作。

在本文中,我们首先发现以前模型之所以视频领域泛化能力较差,是因为当泛化到目标领域时,目标时空数据同时存在着空域偏移(spatial domain shift)和时域偏移(temporal domain shift)。空域偏移是由于视频帧的静态特征的变化引起的,如图4所示,相同人做的动作在不同的视角下静态特征是完全不同的。以往的图像域泛化方法可以部分解决这一问题,比如对抗性自适应数据增强方法ADA。不同于图像之间只共享静态物体特征,时空序列之间会共享同一类型的局部时空运动特征,时域偏移往往由于局部时空运动在未知目标领域的意外缺失或错位而产生。如图1所示,运球上篮与踢足球共享“跑步”这一局部运动。

VideoDG的核心贡献主要是两个方面:

  • VideoDG通过对抗性金字塔网络( APN)在不同的时间尺度上校准局部时空运动关系和全局运动关系特征,利用全局时空运动防止局部时空泛化到错误的方向,兼顾了迁移性与判别性。
  • VideoDG引入了配套的鲁棒时空金字塔对抗数据增强方法( RADA)训练算法,使用 局部时空运动生成对抗样本来增强源领域并提高了APN对由关系特征衍生的不同时空对抗样本的鲁棒性。
图1. 视频领域泛化问题的求解依赖于局部时空运动关系的正确对齐,而局部时空运动关系可以被具有较长时间分辨性的全局时空运动关系所引导。


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“RADA” 就可以获取TPAMI 2021|VideoDG:首个视频领域泛化模型》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!


欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

【ICLR2022】基于任务相关性的元学习泛化边界
专知会员服务
19+阅读 · 2022年2月8日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
31+阅读 · 2021年2月7日
专知会员服务
24+阅读 · 2020年12月16日
专知会员服务
55+阅读 · 2020年3月16日
TPAMI’21 | 跨域人脸表情识别新基准
极市平台
2+阅读 · 2021年12月5日
顶刊TPAMI 2021!跨域人脸表情识别新基准
从ICCV 2021看域泛化与域自适应最新研究进展
PaperWeekly
0+阅读 · 2021年10月28日
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2021年4月8日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
30+阅读 · 2019年3月13日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员