关于BERT:你不知道的事

2020 年 8 月 23 日 AINLP



近期对BERT系列综述了一番,但记得以前刚接触BERT的时候有很多疑问,之后通过看博客、论文陆续弄明白了。这次就以QA的形式将关于BERT的疑问及其相应解答分享给大家,不足之处,望请指出。关注【NLP有品】后期会不定期分享各个版本bert的详细解读以及实战代码,敬请期待。

(1)BERT MASK方式的优缺点?

答:BERT的mask方式:在选择mask的15%的词当中,80%情况下使用mask掉这个词,10%情况下采用一个任意词替换,剩余10%情况下保持原词汇不变。

优点:1)被随机选择15%的词当中以10%的概率用任意词替换去预测正确的词,相当于文本纠错任务,为BERT模型赋予了一定的文本纠错能力;2)被随机选择15%的词当中以10%的概率保持不变,缓解了finetune时候与预训练时候输入不匹配的问题(预训练时候输入句子当中有mask,而finetune时候输入是完整无缺的句子,即为输入不匹配问题)。

缺点:针对有两个及两个以上连续字组成的词,随机mask字割裂了连续字之间的相关性,使模型不太容易学习到词的语义信息。主要针对这一短板,因此google此后发表了BERT-WWM,国内的哈工大联合讯飞发表了中文版的BERT-WWM。

(2)BERT中的NSP任务是否有必要?

答:在此后的研究(论文《Crosslingual language model pretraining》等)中发现,NSP任务可能并不是必要的,消除NSP损失在下游任务的性能上能够与原始BERT持平或略有提高。这可能是由于Bert以单句子为单位输入,模型无法学习到词之间的远程依赖关系。针对这一点,后续的RoBERTa、ALBERT、spanBERT都移去了NSP任务。

(3)BERT深度双向的特点,双向体现在哪儿?

答:BERT使用Transformer-encoder来编码输入,encoder中的Self-attention机制在编码一个token的时候同时利用了其上下文的token,其中‘同时利用上下文’即为双向的体现,而并非想Bi-LSTM那样把句子倒序输入一遍。

(4)BERT深度双向的特点,深度体现在哪儿?

答:针对特征提取器,Transformer只用了self-attention,没有使用RNN、CNN,并且使用了残差连接有效防止了梯度消失的问题,使之可以构建更深层的网络,所以BERT构建了多层深度Transformer来提高模型性能。

(5)BERT中并行计算体现在哪儿?

答:不同于RNN计算当前词的特征要依赖于前文计算,有时序这个概念,是按照时序计算的,而BERT的Transformer-encoder中的self-attention计算当前词的特征时候,没有时序这个概念,是同时利用上下文信息来计算的,一句话的token特征是通过矩阵并行‘瞬间’完成运算的,故,并行就体现在self-attention。

(6)BERT中Transformer中的Q、K、V存在的意义?

答:在使用self-attention通过上下文词语计算当前词特征的时候,X先通过WQWK、WV线性变换为QKV,然后如下式右边部分使用QK计算得分,最后与V计算加权和而得。 

倘若不变换为QKV,直接使用每个token的向量表示点积计算重要性得分,那在softmax后的加权平均中,该词本身所占的比重将会是最大的,使得其他词的比重很少,无法有效利用上下文信息来增强当前词的语义表示。

而变换为QKV再进行计算,能有效利用上下文信息,很大程度上减轻上述的影响。

(7)BERT中Transformer中Self-attention后为什么要加前馈网络?

答:由于self-attention中的计算都是线性了,为了提高模型的非线性拟合能力,需要在其后接上前馈网络。

(8)BERT中Transformer中的Self-attention多个头的作用?

答:类似于cnn中多个卷积核的作用,使用多头注意力,能够从不同角度提取信息,提高信息提取的全面性。
下次更新内容可能包括:B站 is all your need中文 NLP 各类任务简介 • 下、基于序列标注的关系抽取实战,等,敬请期待♥♥♥。


欢迎加入预训练模型交流群
进群请添加AINLP小助手微信 AINLPer(id: ainlper),备注预训练模型

推荐阅读

这个NLP工具,玩得根本停不下来

bert性能优化之——用另一种方式整合多头注意力

如何让Bert在finetune小数据集时更“稳”一点

模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法

征稿启示| 200元稿费+5000DBC(价值20个小时GPU算力)

文本自动摘要任务的“不完全”心得总结番外篇——submodular函数优化

Node2Vec 论文+代码笔记

模型压缩实践收尾篇——模型蒸馏以及其他一些技巧实践小结

中文命名实体识别工具(NER)哪家强?

学自然语言处理,其实更应该学好英语

斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。


阅读至此了,分享、点赞、在看三选一吧🙏

登录查看更多
0

相关内容

BERT全称Bidirectional Encoder Representations from Transformers,是预训练语言表示的方法,可以在大型文本语料库(如维基百科)上训练通用的“语言理解”模型,然后将该模型用于下游NLP任务,比如机器翻译、问答。
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
【北航】面向自然语言处理的预训练技术研究综述
专知会员服务
114+阅读 · 2020年4月23日
BERT技术体系综述论文:40项分析探究BERT如何work
专知会员服务
140+阅读 · 2020年3月1日
BERT进展2019四篇必读论文
专知会员服务
68+阅读 · 2020年1月2日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
绝对干货!NLP预训练模型:从transformer到albert
新智元
13+阅读 · 2019年11月10日
一文读懂最强中文NLP预训练模型ERNIE
AINLP
25+阅读 · 2019年10月22日
一文详解Google最新NLP模型XLNet
PaperWeekly
18+阅读 · 2019年7月1日
一步步理解BERT
AINLP
34+阅读 · 2019年6月19日
站在BERT肩膀上的NLP新秀们(PART III)
AINLP
11+阅读 · 2019年6月18日
站在BERT肩膀上的NLP新秀们(PART II)
AINLP
35+阅读 · 2019年6月8日
站在BERT肩膀上的NLP新秀们:XLMs、MASS和UNILM
PaperWeekly
16+阅读 · 2019年6月6日
站在BERT肩膀上的NLP新秀们(PART I)
AINLP
30+阅读 · 2019年6月4日
详细解读谷歌新模型 BERT 为什么嗨翻 AI 圈
人工智能头条
10+阅读 · 2018年10月25日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
4+阅读 · 2019年9月5日
Arxiv
6+阅读 · 2019年8月22日
Arxiv
11+阅读 · 2019年6月19日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关VIP内容
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
【北航】面向自然语言处理的预训练技术研究综述
专知会员服务
114+阅读 · 2020年4月23日
BERT技术体系综述论文:40项分析探究BERT如何work
专知会员服务
140+阅读 · 2020年3月1日
BERT进展2019四篇必读论文
专知会员服务
68+阅读 · 2020年1月2日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
绝对干货!NLP预训练模型:从transformer到albert
新智元
13+阅读 · 2019年11月10日
一文读懂最强中文NLP预训练模型ERNIE
AINLP
25+阅读 · 2019年10月22日
一文详解Google最新NLP模型XLNet
PaperWeekly
18+阅读 · 2019年7月1日
一步步理解BERT
AINLP
34+阅读 · 2019年6月19日
站在BERT肩膀上的NLP新秀们(PART III)
AINLP
11+阅读 · 2019年6月18日
站在BERT肩膀上的NLP新秀们(PART II)
AINLP
35+阅读 · 2019年6月8日
站在BERT肩膀上的NLP新秀们:XLMs、MASS和UNILM
PaperWeekly
16+阅读 · 2019年6月6日
站在BERT肩膀上的NLP新秀们(PART I)
AINLP
30+阅读 · 2019年6月4日
详细解读谷歌新模型 BERT 为什么嗨翻 AI 圈
人工智能头条
10+阅读 · 2018年10月25日
相关论文
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
4+阅读 · 2019年9月5日
Arxiv
6+阅读 · 2019年8月22日
Arxiv
11+阅读 · 2019年6月19日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
Arxiv
22+阅读 · 2018年8月30日
Top
微信扫码咨询专知VIP会员