这项工作主要探索了异常检测的一个具有挑战性但实用的设置:1)训练适用于所有异常检测任务的单一模型(无需微调即可推广);2)仅提供少量新类别图像(少样本);3)只有正常样本用于训练(无监督)。尝试探索这种设置是异常检测走向实际大规模工业应用的重要一步。为了学习类别无关的模型,本文提出了一种基于比较的解决方案,这与流行的基于重建或基于单分类的方法有很大不同。具体采用的配准模型建立在已有的配准方案基础上,充分参考了现有的杰出工作 [1,2,3],在不需要参数调整的前提下,在新的异常检测数据上取得了令人印象深刻的检测效果。
参考文献[1] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. CVPR. 2021.[2] Max Jaderberg et. al. Spatial transformer networks. NeurIPS. 2015.[3] Ye Zheng et. al. Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization. arXiv:2110.04538. 2021.[4] Shelly Sheynin et. al. A hierarchical transformation-discriminating generative model for few shot anomaly detection. ICCV. 2021.[5] Marco Rudolph et.al. Same same but differnet: Semi-supervised defect detection with normalizing flows. WACV. 2021.[6] Paul Bergmann et. al. MVTec AD--A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. CVPR. 2019.[7] Stepan Jezek et. al. Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions. ICUMT. 2021.