ECCV 2022 | 无需微调即可推广!基于配准的少样本异常检测框架

2022 年 7 月 27 日 PaperWeekly


©作者 | 王延峰、张娅

单位 | 上海交大、上海人工智能实验室

来源 | 机器之心


近年来,异常检测在工业缺陷检测、医疗诊断,自动驾驶等领域有着广泛的应用。“异常”通常定义为 “正常” 的对立面,即所有不符合正常规范的样本。通常来说,相比于正常,异常事件的种类是不可穷尽的,且十分稀有,难以收集,因此不可能收集详尽的异常样本进行训练。因此,近期关于异常检测的研究主要致力于无监督学习,即仅使用正常样本,通过使用单类别(one-class)分类,图像重建(reconstruction),或其他自监督学习任务对正常样本进行建模,之后,通过识别不同于模型分布的样本来检测异常。

大多数现有的异常检测方法都专注于为每个异常检测任务训练一个专用模型。然而,在诸如缺陷检测之类的真实场景中,考虑到要处理数百种工业产品,为每种产品均收集大量训练集是不划算的。对此,上海交通大学 MediaBrain 团队和上海人工智能实验室智慧医疗团队等提出了一个基于配准的少样本异常检测框架,通过学习多个异常检测任务之间共享的通用模型,无需进行模型参数调整,便可将其推广到新的异常检测任务。目前,这项研究已被 ECCV2022 接收为 Oral 论文,完整训练代码及模型已经开源。


论文标题:

Registration based Few-Shot Anomaly Detection

论文链接:

https://arxiv.org/abs/2207.07361

代码链接:

https://github.com/MediaBrain-SJTU/RegAD




方法简介

在这项工作中,少样本异常检测通用模型的训练受到了人类如何检测异常的启发。事实上,当尝试检测图像中的异常时,人们通常会将该检测样本与某个已经被确定为正常的样本进行比较,从而找出差异,有差异的部分就可以被认为是异常。

为了实现这种类似于人类的比较的过程,本文作者采用了配准技术。本文作者认为,对于配准网络而言,只要知道如何比较两个极度相似的图像,图像的实际语义就不再重要,因此模型就更能够适用于从未见过的异常检测新任务。配准特别适用于少样本异常检测,因为配准可以非常方便地进行跨类别推广,模型无需参数微调就能够快速应用于新的异常检测任务。


上图概述了基于配准的少样本异常检测的框架。与常规的异常检测方法(one-model-per-category)不同,这项工作(one-model-all-category)首先使用多类别数据联合训练一个基于配准的异常检测通用模型。来自不同类别的正常图像一起用于联合训练模型,随机选择来自同一类别的两个图像作为训练对。在测试时,为目标类别以及每个测试样本提供了由几个正常样本组成的支撑集。给定支撑集,使用基于统计的分布估计器估计目标类别注册特征的正态分布。超出统计正态分布的测试样本被视为异常。


这项工作采用了一个简单的配准网络,同时参考了 Siamese [1], STN [2] 和 FYD [3]。具体地说,以孪生神经网络(Siamese Network)为框架,插入空间变换网络(STN)实现特征配准。为了更好的鲁棒性,本文作者利用特征级的配准损失,而不是像典型的配准方法那样逐像素配准,这可以被视为像素级配准的松弛版本。



实验结果

在与其他少样本异常检测方法的比较上,RegAD 无论在检测性能、适用到新类别数据的自适应时间上,相比于基准方法 TDG [4] 和 DiffNet [5] 都有显著的优势。这是由于其他的方法都需要针对新的类别数据进行模型的多轮迭代更新。

另外,RegAD 相比于没有进行多类别特征配准联合训练的版本(RegAD-L),性能也得到了显著的提升,体现出基于配准的通用异常检测模型的训练是十分有效的。本文在异常检测数据集 MVTec [6] 和 MPDD [7] 上进行实验。更多的实验结果和消融实验可参考原论文。


此外,作者还展示了异常定位可视化的结果。可以看到,联合训练可以使得模型的异常定位变得更加准确。


T-SNE 的可视化也显示出,基于配准的训练可以使得同类别的正常图像特征变得更加紧凑,从而有利于异常数据的检出。




总结


这项工作主要探索了异常检测的一个具有挑战性但实用的设置:1)训练适用于所有异常检测任务的单一模型(无需微调即可推广);2)仅提供少量新类别图像(少样本);3)只有正常样本用于训练(无监督)。

尝试探索这种设置是异常检测走向实际大规模工业应用的重要一步。为了学习类别无关的模型,本文提出了一种基于比较的解决方案,这与流行的基于重建或基于单分类的方法有很大不同。具体采用的配准模型建立在已有的配准方案基础上,充分参考了现有的杰出工作 [1,2,3],在不需要参数调整的前提下,在新的异常检测数据上取得了令人印象深刻的检测效果。

参考文献


[1] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. CVPR. 2021.
[2] Max Jaderberg et. al. Spatial transformer networks. NeurIPS. 2015.
[3] Ye Zheng et. al. Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization. arXiv:2110.04538. 2021.
[4] Shelly Sheynin et. al. A hierarchical transformation-discriminating generative model for few shot anomaly detection. ICCV. 2021.
[5] Marco Rudolph et.al. Same same but differnet: Semi-supervised defect detection with normalizing flows. WACV. 2021.
[6] Paul Bergmann et. al. MVTec AD--A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. CVPR. 2019.
[7] Stepan Jezek et. al. Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions. ICUMT. 2021.


更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编




🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·

登录查看更多
2

相关内容

【ICML2022】基于元语义正则化的介入性对比学习
专知会员服务
21+阅读 · 2022年7月1日
【CVPR2022】开放集半监督图像生成
专知会员服务
23+阅读 · 2022年5月3日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
22+阅读 · 2021年11月29日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
85+阅读 · 2020年6月9日
【浙江大学】使用MAML元学习的少样本图分类
专知会员服务
63+阅读 · 2020年3月22日
ECCV 2022 | AirDet: 无需微调的小样本目标检测方法
极市平台
0+阅读 · 2022年7月30日
NeurIPS 2021 | 物体检测与分割的零标签视觉学习
微软研究院AI头条
0+阅读 · 2021年12月1日
ICCV2019|基于全局类别表征的小样本学习
极市平台
11+阅读 · 2019年9月21日
【紫冬新作】人脸识别新突破:真实场景下的大规模双样本学习方法
中国科学院自动化研究所
11+阅读 · 2019年3月7日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Fully Sparse 3D Object Detection
Arxiv
0+阅读 · 2022年10月3日
Arxiv
13+阅读 · 2020年10月19日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员