【经典书】计算机视觉中的结构化学习与预测,178页pdf

2022 年 11 月 7 日 专知


强大的统计模型可以从大量数据中有效地学习,目前正在彻底改变计算机视觉。这些模型具有丰富的内部结构,反映了特定于任务的关系和约束。本教程向读者介绍计算机视觉中最流行的结构化模型类。我们的重点是离散无向图模型,我们详细介绍了概率推理和最大后验推理的算法。我们分别讨论了最近在一般结构化模型中成功的预测技术。在本教程的第二部分中,我们将描述参数学习的方法,其中我们将经典的基于最大似然的方法与最新的基于预测的参数学习方法区分开来。我们着重介绍了增强当前模型的发展,并讨论了核化模型和潜变量模型。为了使教程具有实用性并提供进一步研究的链接,我们提供了计算机视觉文献中许多方法的成功应用实例。



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DEAD” 就可以获取【NeurIPS 2022】扩散模型的深度平衡方法》专知下载链接

                       
专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取100000+AI(AI与军事、医药、公安等)主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取100000+AI主题知识资料

登录查看更多
3

相关内容

【2022新书】神经网络,机器学习和图像处理,221页pdf
专知会员服务
94+阅读 · 2022年11月17日
【博士论文】鲁棒深度学习自动驾驶,160页pdf
专知会员服务
39+阅读 · 2022年11月17日
【2022新书】应用Python进行时间序列分析与预测,377页pdf
专知会员服务
140+阅读 · 2022年11月3日
最新《计算机视觉持续学习进展》综述论文,22页pdf
专知会员服务
72+阅读 · 2021年9月25日
【NeurIPS 2020】近似推断进展,272页ppt
专知会员服务
32+阅读 · 2020年12月11日
专知会员服务
64+阅读 · 2020年9月10日
专知会员服务
134+阅读 · 2020年8月24日
【干货书】用Python构建概率图模型,173页pdf
专知会员服务
111+阅读 · 2020年8月23日
【简明书】强化学习的基础,111页pdf
专知
1+阅读 · 2022年11月16日
【新书】多元统计与机器学习,185页pdf
专知
7+阅读 · 2022年6月5日
【新书册】贝叶斯神经网络,41页pdf
专知
28+阅读 · 2020年6月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
26+阅读 · 2018年8月19日
VIP会员
相关VIP内容
【2022新书】神经网络,机器学习和图像处理,221页pdf
专知会员服务
94+阅读 · 2022年11月17日
【博士论文】鲁棒深度学习自动驾驶,160页pdf
专知会员服务
39+阅读 · 2022年11月17日
【2022新书】应用Python进行时间序列分析与预测,377页pdf
专知会员服务
140+阅读 · 2022年11月3日
最新《计算机视觉持续学习进展》综述论文,22页pdf
专知会员服务
72+阅读 · 2021年9月25日
【NeurIPS 2020】近似推断进展,272页ppt
专知会员服务
32+阅读 · 2020年12月11日
专知会员服务
64+阅读 · 2020年9月10日
专知会员服务
134+阅读 · 2020年8月24日
【干货书】用Python构建概率图模型,173页pdf
专知会员服务
111+阅读 · 2020年8月23日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员