前言 在这本书中,我们从图形模型的基础知识、它们的类型、为什么使用它们以及它们解决了什么类型的问题开始。然后我们在图形模型的上下文中探索子问题,例如它们的表示、构建它们、学习它们的结构和参数,以及使用它们回答我们的推理查询。

这本书试图提供足够的理论信息,然后使用代码示例窥视幕后,以了解一些算法是如何实现的。代码示例还提供了一个方便的模板,用于构建图形模型和回答概率查询。在文献中描述的许多种类的图形模型中,这本书主要关注离散贝叶斯网络,偶尔也有来自马尔科夫网络的例子。

内容概述

  • 第一章:概率论,涵盖了理解图形模型所需的概率论的概念。

  • 第2章:有向图形模型,提供了关于贝叶斯网络的信息,他们的属性相关的独立性,条件独立性,和D分离。本章使用代码片段加载贝叶斯网络并理解其独立性。

  • 第三章:无向图模型,介绍了马尔可夫网络的性质,马尔可夫网络与贝叶斯网络的区别,以及马尔可夫网络的独立性。

  • 第四章:结构学习,涵盖了使用数据集来推断贝叶斯网络结构的多种方法。我们还学习了结构学习的计算复杂性,并在本章使用代码片段来学习抽样数据集中给出的结构。

  • 第5章:参数学习,介绍了参数学习的最大似然法和贝叶斯方法。

  • 第6章:使用图形模型的精确推理,解释了精确推理的变量消除算法,并探索了使用相同算法回答我们的推理查询的代码片段。

  • 第7章:近似推理方法,探讨了网络太大而无法进行精确推理的近似推理。我们还将通过在马尔科夫网络上使用循环信念传播运行近似推论的代码样本。

目录

成为VIP会员查看完整内容
0
73

相关内容

电子书指“电子书籍”,即数字化的出版物。

这本书的前半部分快速而彻底地概述了Python的所有基础知识。你不需要任何以前的经验与编程开始,我们将教你一切你需要知道,一步一步。

第二部分着重于用Python以实用的方式解决有趣的、真实的问题。一旦你掌握了基础知识,你就会通过跟随我们的动手编程练习和项目迅速提高。

我们在书中的每一页都精心安排了漂亮的排版,代码示例的语法高亮显示,以及教学截图,这样你可以有效地处理和记忆信息:

所有材料都是Python 3.9的最新版本,Python编程语言在2020年发布的最新和最好的版本。简而言之,以下是你将学到的Python基础知识:Python 3的实用介绍:

安装和运行Python:在Windows、macOS或Linux上设置Python 3.9编码环境

  • 核心Python 3概念和约定:解释器会话、脚本、查找和修复代码bug、如何组织代码和构造Python程序、如何有效地学习和实践

  • Python 3.9基本原理:变量、基本数据类型、函数和循环、条件逻辑和控制流、字符串格式、列表/元组/字典、文件输入和输出、错误处理。

  • 中级Python概念:面向对象编程(OOP)、正则表达式、名称空间和作用域、异常处理、安装第三方包。

  • Python的实际使用:创建和修改PDF文件、使用数据库、从web下载和抓取内容、数据科学基础(科学计算和绘图)、图形用户界面和GUI编程。

成为VIP会员查看完整内容
0
52

这是一本关于理论计算机科学的本科入门课程的教科书。这本书的教育目的是传达以下信息:

• 这种计算出现在各种自然和人为系统中,而不仅仅是现代的硅基计算机中。 • 类似地,除了作为一个极其重要的工具,计算也作为一个有用的镜头来描述自然,物理,数学,甚至社会概念。 • 许多不同计算模型的普遍性概念,以及代码和数据之间的二元性相关概念。 • 一个人可以精确地定义一个计算的数学模型,然后用它来证明(有时只是猜测)下界和不可能的结果。 • 现代理论计算机科学的一些令人惊讶的结果和发现,包括np完备性的流行、交互作用的力量、一方面的随机性的力量和另一方面的去随机化的可能性、在密码学中“为好的”使用硬度的能力,以及量子计算的迷人可能性。

成为VIP会员查看完整内容
0
60

这是第一本介绍随机过程贝叶斯推理程序的书。贝叶斯方法有明显的优势(包括对先验信息的最佳利用)。最初,这本书以贝叶斯推理的简要回顾开始,并使用了许多与随机过程分析相关的例子,包括四种主要类型,即离散时间和离散状态空间以及连续时间和连续状态空间。然后介绍了理解随机过程所必需的要素,接着是专门用于此类过程的贝叶斯分析的章节。重要的是,这一章专门讨论随机过程中的基本概念。本文详细描述了离散时间马尔可夫链、马尔可夫跳跃过程、常规过程(如布朗运动和奥恩斯坦-乌伦贝克过程)、传统时间序列以及点过程和空间过程的贝叶斯推理(估计、检验假设和预测)。书中着重强调了许多来自生物学和其他科学学科的例子。为了分析随机过程,它将使用R和WinBUGS。

http://dl.booktolearn.com/ebooks2/science/statistics/9781138196131_Bayesian_Inference_for_Stochastic_Processes_52c4.pdf

成为VIP会员查看完整内容
0
66

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
1
84

这本书的第五版继续讲述如何运用概率论来深入了解真实日常的统计问题。这本书是为工程、计算机科学、数学、统计和自然科学的学生编写的统计学、概率论和统计的入门课程。因此,它假定有基本的微积分知识。

第一章介绍了统计学的简要介绍,介绍了它的两个分支:描述统计学和推理统计学,以及这门学科的简短历史和一些人,他们的早期工作为今天的工作提供了基础。

第二章将讨论描述性统计的主题。本章展示了描述数据集的图表和表格,以及用于总结数据集某些关键属性的数量。

为了能够从数据中得出结论,有必要了解数据的来源。例如,人们常常假定这些数据是来自某个总体的“随机样本”。为了确切地理解这意味着什么,以及它的结果对于将样本数据的性质与整个总体的性质联系起来有什么意义,有必要对概率有一些了解,这就是第三章的主题。本章介绍了概率实验的思想,解释了事件概率的概念,并给出了概率的公理。

我们在第四章继续研究概率,它处理随机变量和期望的重要概念,在第五章,考虑一些在应用中经常发生的特殊类型的随机变量。给出了二项式、泊松、超几何、正规、均匀、伽玛、卡方、t和F等随机变量。

成为VIP会员查看完整内容
2
109

题目

Fundamentals of Graphics Using

简介

本书介绍了2D和3D图形的基本概念和原理,是为学习图形和/或多媒体相关主题的本科生和研究生编写的。 关于图形的大多数书籍都使用C编程环境来说明实际的实现。 本书偏离了这种常规做法,并说明了为此目的使用MATLAB®的情况。 MathWorks,Inc.的MATLAB是一种数据分析和可视化工具,适用于算法开发和仿真应用。 MATLAB的优点之一是它包含内置函数的大型库,与其他当代编程环境相比,该库可用于减少程序开发时间。 假定该学生具有MATLAB的基本知识,尤其是各种矩阵运算和绘图功能。 提供了MATLAB代码,作为对特定示例的解答,读者可以简单地复制并粘贴代码来执行它们。 通常,代码显示预期结果的答案,例如曲线方程,混合函数和变换矩阵,并绘制最终结果以提供解决方案的直观表示。 本书的目的是,首先,演示如何使用MATLAB解决图形问题,其次,通过可视化表示和实际示例,帮助学生获得有关主题的深入知识。

本书大致分为两个部分:2D图形和3D图形,尽管在某些地方这两个概念重叠在一起主要是为了突出它们之间的差异,或者是为了使用较简单的概念使读者为更复杂的概念做准备。

本书的第一部分主要讨论与2D图形有关的概念和问题,涵盖了五章:(1)内插样条线,(2)混合函数和混合样条线,(3)近似样条线,(4)2D变换, (5)样条曲线属性。

第1章介绍了各种类型的插值样条及其使用多项式的表示。 详细讨论了样条方程的推导原理以及所涉及的矩阵代数的理论概念,然后通过数值示例和MATLAB代码来说明过程。 在大多数示例后均附有图形化图表,以使读者能够直观地看到方程式如何根据给定的起点,终点和其他相关参数转换为相应的曲线。 本章还重点介绍了使用线性,二次方和三次方变体的样条方程的标准或空间形式以及参数形式的这些过程的差异。

成为VIP会员查看完整内容
0
71

介绍

这本书在保持非常务实的教导和结果导向付出很大的精力。构建聊天机器人不只是完成一个教程或遵循几个步骤,它本身就是一种技能。这本书肯定不会用大量的文本和过程让你感到无聊;相反,它采用的是边做边学的方法。到目前为止,在你的生活中,你肯定至少使用过一个聊天机器人。无论你是不是一个程序员,一旦你浏览这本书,你会发现构建模块的聊天机器人,所有的奥秘将被揭开。建立聊天机器人可能看起来很困难,但这本书将让你使它如此容易。我们的大脑不是用来直接处理复杂概念的;相反,我们一步一步地学习。当你读这本书的时候,从第一章到最后一章,你会发现事情的进展是多么的清晰。虽然你可以直接翻到任何一章,但我强烈建议你从第一章开始,因为它肯定会支持你的想法。这本书就像一个网络系列,你在读完一章之后就无法抗拒下一章的诱惑。在阅读完这本书后,你所接触到的任何聊天机器人都会在你的脑海中形成一幅关于聊天机器人内部是如何设计和构建的画面。

这本书适合谁?

这本书将作为学习与聊天机器人相关的概念和学习如何建立他们的一个完整的资源。那些将会发现这本书有用的包括: Python web开发人员希望扩大他们的知识或职业到聊天机器人开发。 学生和有抱负的程序员想获得一种新的技能通过亲身体验展示的东西,自然语言爱好者希望从头开始学习。 企业家如何构建一个聊天机器人的伟大的想法,但没有足够的技术关于如何制作聊天机器人的可行性信息。 产品/工程经理计划与聊天机器人相关项目。

如何使用这本书?

请记住,这本书的写作风格和其他书不一样。读这本书的时候要记住,一旦你完成了这本书,你就可以自己建造一个聊天机器人,或者教会别人如何建造一个聊天机器人。在像阅读其他书籍一样阅读这本书之前,务必记住以下几点:

  • 这本书涵盖了构建聊天机器人所需的几乎所有内容,而不是现有内容。
  • 这本书是关于花更多的时间在你的系统上做事情的,这本书就在你身边。确保您执行每个代码片段并尝试编写代码;不要复制粘贴。
  • 一定要按照书中的步骤去做;如果你不理解一些事情,不要担心。你将在本章的后面部分了解到。
  • 可以使用本书所提供的源代码及Jupyter NoteBook作为参考。

内容概要

  • Chapter 1: 在本章中,你将从商业和开发人员的角度了解与聊天机器人相关的事情。这一章为我们熟悉chatbots概念并将其转换为代码奠定了基础。希望在本章结束时,你会明白为什么你一定要为自己或你的公司创建一个聊天机器人。
  • Chapter 2: 在本章中会涉及聊天机器人的自然语言处理,你将学习到聊天机器人需要NLP时应该使用哪些工具和方法。这一章不仅教你在NLP的方法,而且还采取实际的例子和演示与编码的例子。本章还讨论了为什么使用特定的NLP方法可能需要在聊天机器人。注意,NLP本身就是一种技能。
  • Chapter 3: 在本章中,你将学习如何使用像Dialogflow这样的工具以一种友好而简单的方式构建聊天机器人。如果你不是程序员,你肯定会喜欢它,因为它几乎不需要编程技能。
  • Chapter 4:在本章中,你将学习如何以人们想要的方式构建聊天机器人。标题说的很艰难,但一旦你完成了前一章,你会想要更多,因为这一章将教如何建立内部聊天机器人从零开始,以及如何使用机器学习算法训练聊天机器人。
  • Chapter 5:在本章中,部署你的聊天机器人纯粹是设计给你的聊天机器人应用一个最后的推动。当你经历了创建聊天机器人的简单和艰难的过程后,你肯定不想把它留给自己。你将学习如何展示你的聊天机器人到世界使用Facebook和Slack,最后,整合他们在你自己的网站。
成为VIP会员查看完整内容
Building Chatbots with Python.pdf
0
108

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
132

简单易懂,读起来很有趣,介绍Python对于初学者和语言新手都是理想的。作者Bill Lubanovic带您从基础知识到更复杂和更多样的主题,混合教程和烹饪书风格的代码配方来解释Python 3中的概念。章节结尾的练习可以帮助你练习所学的内容。

您将获得该语言的坚实基础,包括测试、调试、代码重用和其他开发技巧的最佳实践。本书还向您展示了如何使用各种Python工具和开放源码包将Python用于商业、科学和艺术领域的应用程序。

  • 学习简单的数据类型,以及基本的数学和文本操作
  • 在Python的内置数据结构中使用数据协商技术
  • 探索Python代码结构,包括函数的使用
  • 用Python编写大型程序,包括模块和包
  • 深入研究对象、类和其他面向对象的特性
  • 检查从平面文件到关系数据库和NoSQL的存储
  • 使用Python构建web客户机、服务器、api和服务
  • 管理系统任务,如程序、进程和线程
  • 了解并发性和网络编程的基础知识

成为VIP会员查看完整内容
0
117

概率图模型是机器学习中的一种技术,它使用图论的概念来简明地表示和最佳地预测数据问题中的值。

图模型为我们提供了在数据中发现复杂模式的技术,广泛应用于语音识别、信息提取、图像分割和基因调控网络建模等领域。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一整章是关于朴素贝叶斯模型和隐马尔可夫模型的。这些模型已经通过实际例子进行了详细的讨论。

你会学到什么

  • 掌握概率论和图论的基本知识
  • 使用马尔可夫网络
  • 实现贝叶斯网络
  • 图模型中的精确推理技术,如变量消除算法
  • 了解图模型中的近似推理技术,如消息传递算法

图模型中的示例算法 通过真实的例子来掌握朴素贝叶斯的细节 使用Python中的各种库部署PGMs 获得隐马尔可夫模型的工作细节与现实世界的例子

详细 概率图模型是机器学习中的一种技术,它使用图论的概念来简洁地表示和最佳地预测数据问题中的值。在现实问题中,往往很难选择合适的图模型和合适的推理算法,这对计算时间和精度有很大的影响。因此,了解这些算法的工作细节是至关重要的。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一个完整的章节专门讨论最广泛使用的网络朴素贝叶斯模型和隐马尔可夫模型(HMMs)。这些模型已经通过实际例子进行了详细的讨论。

风格和方法 一个易于遵循的指南,帮助您理解概率图模型使用简单的例子和大量的代码例子,重点放在更广泛使用的模型。

成为VIP会员查看完整内容
0
125
小贴士
相关VIP内容
专知会员服务
52+阅读 · 2020年10月11日
专知会员服务
60+阅读 · 2020年9月17日
专知会员服务
66+阅读 · 2020年8月27日
专知会员服务
84+阅读 · 2020年7月29日
专知会员服务
109+阅读 · 2020年7月28日
【干货书】图形学基础,427页pdf
专知会员服务
71+阅读 · 2020年7月12日
专知会员服务
132+阅读 · 2020年6月10日
专知会员服务
117+阅读 · 2020年5月17日
相关论文
Ruocheng Guo,Lu Cheng,Jundong Li,P. Richard Hahn,Huan Liu
19+阅读 · 2020年5月5日
Bernhard Schölkopf
9+阅读 · 2019年11月24日
Linjie Li,Zhe Gan,Yu Cheng,Jingjing Liu
4+阅读 · 2019年3月29日
Learning to Importance Sample in Primary Sample Space
Quan Zheng,Matthias Zwicker
4+阅读 · 2018年8月23日
Felix Laumann,Kumar Shridhar,Adrian Llopart Maurin
17+阅读 · 2018年6月27日
KiJung Yoon,Renjie Liao,Yuwen Xiong,Lisa Zhang,Ethan Fetaya,Raquel Urtasun,Richard Zemel,Xaq Pitkow
3+阅读 · 2018年5月25日
Zhewei Wang,Bibo Shi,Charles D. Smith,Jundong Liu
4+阅读 · 2018年5月15日
Ankan Bansal,Karan Sikka,Gaurav Sharma,Rama Chellappa,Ajay Divakaran
6+阅读 · 2018年4月12日
Daniel Gordon,Aniruddha Kembhavi,Mohammad Rastegari,Joseph Redmon,Dieter Fox,Ali Farhadi
5+阅读 · 2018年4月5日
Yan Zhang,Jonathon Hare,Adam Prügel-Bennett
10+阅读 · 2018年2月15日
Top