深度学习彻底改变了机器学习和人工智能,在几个标准基准上取得了超人的表现。众所周知,深度学习模型训练效率低;它们通过多次处理数以百万计的训练数据来学习,并且需要强大的计算资源来同时并行处理大量数据,而不是顺序处理。深度学习模型也存在非预期失效模式;他们可能会被愚弄,做出错误的预测。

在本文中,我们研究了提高深度学习模型训练效率和鲁棒性的方法。在学习视觉语义嵌入的背景下,我们发现优先学习更多的信息训练数据可以提高收敛速度和提高测试数据的泛化性能。我们形式化了一个简单的技巧,称为硬负挖掘,作为学习目标函数的修改,没有计算开销。接下来,我们在深度学习的通用优化方法中寻求优化速度的改进。我们展示了对训练数据采样的冗余感知修改提高了训练速度,并开发了一种检测训练信号多样性的有效方法,即梯度聚类。最后,我们研究了深度学习中的对抗鲁棒性,以及在不使用额外数据训练的情况下实现最大对抗鲁棒性的方法。对于线性模型,我们证明保证最大的鲁棒性实现只有通过适当的选择优化器,正则化,或架构。

https://arxiv.org/pdf/2112.01423.pdf

成为VIP会员查看完整内容
57

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【伯克利博士论文】学习跨领域的可迁移表示
专知会员服务
46+阅读 · 2022年8月17日
【CMU博士论文】通过记忆的元强化学习,118页pdf
专知会员服务
46+阅读 · 2022年6月23日
【ICML2022】鲁棒强化学习的策略梯度法
专知会员服务
37+阅读 · 2022年5月21日
专知会员服务
19+阅读 · 2021年9月14日
【Haute-Alsace博士论文】深度学习时序分类,175页pdf
专知会员服务
99+阅读 · 2020年10月4日
【ETH博士论文】贝叶斯深度学习,241页pdf
专知
9+阅读 · 2022年1月16日
深度学习网络调参技巧
AINLP
15+阅读 · 2019年11月15日
从浅层模型到深度模型:概览机器学习优化算法
机器之心
26+阅读 · 2017年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月16日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员