极市导读
研究生想发篇论文混个毕业,深度学习方向的,创新点很小,但是做实验是有效果的。请问这样可以发篇水刊的sci吗? >>加入极市CV技术交流群,走在计算机视觉的最前沿
首先,当然可以发。不过即使你不提点,也可以发。然后,重点是如何发?给出一些讨论以供参考:
此种方法最为直接,即知其然也要知其所以然。如果你提的小改进使得结果变好了,那结果变好的原因是什么?什么条件下结果能变好、什么条件下不能?提出的改进是否对领域内同类方法是通用的?这一系列问题均可以进行进一步的实验和论证。你看,这样你的文章不就丰富了嘛。这也是对领域很重要的贡献。
不在主流任务/会议期刊/数据集上做,而是换一个任务/数据集/应用,因此投到相应的会议或期刊上。这么一来,相当于你是做应用、而不是做算法的,只要写的好,就很有可能被接受。当然,前提是该领域确实存在此问题。无中生有是不可取的,反而会弄巧成拙。写作时一定要结合应用背景来写,突出对领域的贡献。
虽然实际上你就做了一点点提升和小创新,但你千万不能这么老实地说呀。而是说,你对这个A + B的两个模块背后所代表的两大思想进行了深入的分析,然后各种画图、做实验、提供结果,说明他们各自的局限,然后你再提自己的改进。这样的好处是你的视角就不是简单地发一篇paper,而是站在整个领域方法论的角度来说你的担忧。这种东西大家往往比较喜欢看、而且往往看题目和摘要就觉得非常厉害了。这类文章如果分析的好,其价值便不再是所提出的某个改进点,而是对领域全面而深刻的分析。
不说你提点,甚至你不提点都是可以的。怎么做呢?很简单,你就针对你做的改进点,再发散一下,设计更大量的实验来对所有方法进行验证。所以这篇paper通篇没有提出任何方法,全是实验。然后你来一通分析(分析结果也大多是大家知道的东西)。但这不重要啊,重要的是你做了实验验证了这些结论。典型代表:Google家的各种财大气粗做几千个实验得出大家都知道的结论的paper,比如最近ICLR'22这篇:Exploring the Limits of Large Scale Pre-training.
为避免误导大家,我在这里做个说明:所列出的技巧方法绝对不是灌水方法,而是正常的科研思维和写作手法。即使是创新性比较大、对领域有大贡献的东西仍然可以采用类似手法来写。这就要求大家在写作时找准出发点和落脚点,才能做到有的放矢。毕竟写作投稿这种事就像写文学作品,平铺直叙虽朴实无华,却难免让别人有审美疲劳。最后,这并不是说采用以下写法的文章都是套路和灌水,它们均有各自的意义;同时,也并不是说采用以下方式就一定能中文章:抛开写作技巧不谈,任何事情均需认真刻苦对待以求完善。
最后说一句,不管上述哪种方法、甚至即使你有特别大的创新时,写作永远都是重要的。
公众号后台回复“数据集”获取90+深度学习数据集下载~
# CV技术社群邀请函 #
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~