普通程序员如何入门AI

2017 年 7 月 6 日 凡人机器学习

毫无疑问,人工智能是目前整个互联网领域最火的行业,随着AlphaGo战胜世界围棋冠军,以及各种无人驾驶、智能家居项目的布道,人们已经意识到了AI就是下一个风口。当然,程序员是我见过对于新技术最敏感的一个人群,举一个例子:当TensorFlow刚刚面世的时候,几乎所有搞大数据的同学一见面就开始交流这方面的内容,仿佛所有人一夜之间成了“TFboys”(tensorflow_boys)。我觉得之所以程序员对于新技术很敏感有两个原因,其一是技术这碗饭会逼着你不停地去学习,不然很快会被淘汰;其二是程序员大多是理工男,对于新事物是充满好奇的。借着出版《机器学习实践应用》的机会 

,又是到了这样一个档口,就是很多程序员面临转型,需要去学习AI技术,在这一文我就简单谈谈我对学习AI的一些看法,我自己的肤浅想法,轻喷哈。

(先声明下我不是算法大神,我是阿里机器学习产品经理,不过我身边都是各种各样的算法大牛)首先讲下我个人的学习经历,我最先接触编程是在刚上大学的时候,2010年左右。最早的时候大家都信奉PHP是最牛的语言,当时觉得能做网站的人都是大仙。过了不到3年,移动互联网的浪潮来了,几乎所有人全部转去学Android开发、iOS开发,而且最初的时候做移动端开发是非常吃香的(这股浪潮很像现在的AI浪潮,我确信不到三年时间市面上的算法工程师会成指数性增长)。我自己当时是在做android开发,也是在一家大的手机公司实习,我当时觉得开发手机软件挺酷的,直到有一个契机让我见识到了AI。当时是有一次机会调用了某个以色列公司开发的眼球识别SDK,13年那时候看到眼球识别这总高端技术是觉得非常神奇的,后来我偷偷Google了下后端的技术,这才第一次认识到了世界上居然有机器学习算法这种东西。于是理工男的那种对新技术的好奇心就促使我去学习机器学习算法,刚一开始先认识了一些基础的算法,比如LR、KNN、RF这些,当时在国内没有这么多的视频课程可以学习,买了一本《机器学习实战》的书,是外国翻译过来的,把里面的很多代码都自己推敲了一遍,成长很大。但是学习机器学习,光知道算法是远远不够的,还需要数据和场景去操练。正好当时阿里举办第一届天池大赛,奖金记得有100万,于是就和几个小伙伴结队参赛,比赛比了两个月,当时真正的在TB级别的数据下实践了特征工程、调参、交叉验证、计算F1分等等。而且第一次体会了分布式集群的威力。当时比赛用的是阿里云的xlab,也就是机器学习PAI的前身。比赛的时候我就深深的爱上了这款云端的机器学习工具,导致后来我义无反顾的投身阿里云,做了PAI的产品经理,开启了我的机器学习业务实践之路。

讲了这么多我自己的经历,希望对大家有一些启发。总结归纳一下程序员如何转型成为AI工程师。首先,需要确立自己的职责,是算法开发还是算法应用,这两个差别很大。如果工作的性质是通过算法去解决一些实际的业务问题,偏算法应用,那我觉得需要更专注于了解业务以及算法的使用场景。如果工作性质是去开发算法,提升效率,那么需要更多的关注数学推导能力以及编程技巧。机器学习算法对数学的能力要求是非常高的,这就是为什么BAT很多算法开发工程师都是数学专业毕业的原因。 
 
当明确了自己的定位,还需要一个环境去实践,需要有大量的数据在特定的场景下去不断磨练自己对数据的认知,对数据认知的过程就是将业务抽象成数学公式,将数据转化为特征的过程,我觉得这个能力会比推导算法更重要。在这里给大家一些推荐: 
1.首先学习算法可以去看一些书《机器学习实战》(强烈推荐)、《统计学习方法》(偏底层数学推导)、《机器学习实践应用》(偏业务)。也可以去看看吴恩达老师的关于机器学习的斯坦福公开课。 
2.关于实践场景,可以去参加Kaggle的比赛或者天池大赛,在这里强烈推荐天池大赛,因为天池不光会提供真实的数据和比赛环境,最关键的是你可以获得许多与高手切磋交流的机会,这些交流会让人快速成长。 
3.多多实践,其实市面上有很多现成的开源工具可以使用,有R、Spark-MLib、Sklearn等等,也有很多地方可以下载到开源数据集,推荐UCI数据集。下载好数据,选定一个场景,自己用代码去跑跑效果,比看100篇鸡汤都管用。

最后希望大家都能掌握算法技巧,即使不能从事AI工作,对于数据的认知能力也一定是未来最核心的竞争力。

我自己的一些小看法,仅代表个人哈。 
作者微信公众号: 


登录查看更多
0

相关内容

程序员可以指在程序设计与互联网某个专业领域中的专业人士或是从事软件撰写,程序开发、维护的专业人员。
清华大学《人工智能》书籍教学课件开放下载
专知会员服务
140+阅读 · 2020年7月27日
【2020新书】现代C++初学者指南,301页pdf
专知会员服务
161+阅读 · 2020年7月24日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
195+阅读 · 2020年6月29日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
342+阅读 · 2020年3月17日
【新书】傻瓜式入门深度学习,371页pdf
专知会员服务
191+阅读 · 2019年12月28日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
165+阅读 · 2019年10月28日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
112+阅读 · 2019年10月26日
年薪48万的程序员,他究竟做对了什么?
机器学习算法与Python学习
7+阅读 · 2018年12月28日
95后“过控”专业转行AI工程师打卡!
人工智能头条
5+阅读 · 2018年6月1日
如何入门并成为一名出色的算法工程师?
如何从零到一地开始机器学习 ?(附思维导图)
THU数据派
6+阅读 · 2018年4月17日
一个年薪30万的应届生告诉你应该如何学“算法”!
全球人工智能
4+阅读 · 2018年1月23日
如何从Python起步学习AI
七月在线实验室
5+阅读 · 2017年11月28日
如何入门Python与机器学习 | 赠书
AI100
8+阅读 · 2017年11月14日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
7+阅读 · 2017年12月26日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关VIP内容
清华大学《人工智能》书籍教学课件开放下载
专知会员服务
140+阅读 · 2020年7月27日
【2020新书】现代C++初学者指南,301页pdf
专知会员服务
161+阅读 · 2020年7月24日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
195+阅读 · 2020年6月29日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
342+阅读 · 2020年3月17日
【新书】傻瓜式入门深度学习,371页pdf
专知会员服务
191+阅读 · 2019年12月28日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
165+阅读 · 2019年10月28日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
112+阅读 · 2019年10月26日
相关资讯
年薪48万的程序员,他究竟做对了什么?
机器学习算法与Python学习
7+阅读 · 2018年12月28日
95后“过控”专业转行AI工程师打卡!
人工智能头条
5+阅读 · 2018年6月1日
如何入门并成为一名出色的算法工程师?
如何从零到一地开始机器学习 ?(附思维导图)
THU数据派
6+阅读 · 2018年4月17日
一个年薪30万的应届生告诉你应该如何学“算法”!
全球人工智能
4+阅读 · 2018年1月23日
如何从Python起步学习AI
七月在线实验室
5+阅读 · 2017年11月28日
如何入门Python与机器学习 | 赠书
AI100
8+阅读 · 2017年11月14日
相关论文
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
7+阅读 · 2017年12月26日
Arxiv
4+阅读 · 2017年10月30日
Top
微信扫码咨询专知VIP会员