【Lagrange 乘子】图解高等数学-下 15

2018 年 1 月 23 日 遇见数学 李想

11.8 Lagrange 乘子

如果是求定义域内约束在某个区域内函数的极值, 可以用本次讲述的 Lagrange乘子法.

约束最大值和最小值

观察下面函数 f(x,y)= 49- x 2 y 2  受约束 g(x,y)=x+3y-10=0 的图形.

求双曲柱面  x 2 z 2 -1=0  上到原点最近的点的一个方法是设想中心在原点的球面不断膨胀, 直到刚刚接触到柱面. 此时柱面和球面有同样的切平面和法线.

Lagrange 乘子法

若函数 f(x,y,z) 的变量受约束 g(x,y,z)=0限制, 函数的极值可以用下面Lagrange乘子法求出.

现在看函数 f(x,y)= x y 在椭圆  x 2 8 + y 2 2 =1  上的最大值和最小值, 现在看下解的几何解释. f(x,y)=x y 的等高线图是双曲线 x y=c , 如下:

从上图可是双曲线离开原点越远, f 的绝对值越大. 需要在约束条件下 - 椭圆  x 2 + 4 y 2 =8  上使 f(x,y) 取极值点. 也就是刚刚与椭圆相切的双曲线会距离原点最远, 在这四个切点中, 双曲线的法线也是椭圆的法线. 观察下图动画, 可以看到黑色 "▽f"是 "▽g"的数值倍数.

带两个约束条件的 Lagrange 乘子法

如果是两个约束限制的可微函数求极值, 这里 g1(x,y,z)=0 和 g2(x,y,z)=0, 可微且梯度向量不平行. 可以通过引进两个 Lagrange乘子 λ 和 μ, 通过求解下面方程中的 x,y,z,λ,μ 值来求出极值点的位置:

曲面 g1=0 和 g2=0 通常会相交于一条曲线 C. 沿着这条曲线寻找 f 相对于曲线上其他值的极大值和极小值的点.

例如下面例子中平面 x+y+z=1 (g1)相交于圆柱  x 2 + y 2 =1  (g2) 为一个椭圆, 求这个椭圆上离原点最远的点. 观察 ▽g1 正交于平面 x+y+z=1, 而 ▽g2 正交于曲面 x 2 + y 2 =1 , 向量 ▽g1 和 ▽g2 位于垂直与椭圆曲线的 C (下图红色)的平面内. 并且 ▽f 也正交于 C, 且在 ▽g1 和 ▽g2 决定的平面内, 这意味这对于某个 λ 和 μ 有 ▽f = λ ▽g1 + μ ▽g2. 观察下图来更好理解:

登录查看更多
0

相关内容

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
博客 | MIT—线性代数(上)
AI研习社
9+阅读 · 2018年12月18日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
SVM大解密(附代码和公式)
机器学习算法与Python学习
6+阅读 · 2018年5月22日
【机器学习数学基础】动图解释泰勒级数(一)
机器学习研究会
5+阅读 · 2018年2月25日
干货 | 一文搞懂极大似然估计
AI100
7+阅读 · 2017年12月3日
【直观详解】支持向量机SVM
机器学习研究会
18+阅读 · 2017年11月8日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
机器学习(13)之最大熵模型详解
机器学习算法与Python学习
7+阅读 · 2017年8月24日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
7+阅读 · 2018年11月6日
Arxiv
4+阅读 · 2018年9月6日
VIP会员
相关资讯
博客 | MIT—线性代数(上)
AI研习社
9+阅读 · 2018年12月18日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
SVM大解密(附代码和公式)
机器学习算法与Python学习
6+阅读 · 2018年5月22日
【机器学习数学基础】动图解释泰勒级数(一)
机器学习研究会
5+阅读 · 2018年2月25日
干货 | 一文搞懂极大似然估计
AI100
7+阅读 · 2017年12月3日
【直观详解】支持向量机SVM
机器学习研究会
18+阅读 · 2017年11月8日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
机器学习(13)之最大熵模型详解
机器学习算法与Python学习
7+阅读 · 2017年8月24日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员