视频 | 谷歌大脑提出TCN,能让机器人边看视频边模仿

2018 年 2 月 4 日 AI科技评论 雷锋字幕组

谷歌大脑 Time-Contrastive Networks(TCN)论文解读视频

翻译 | Laura   校对 | 吴璇    整理 | 凡江

AI 科技评论按:在「Time-Contrastive Networks: Self-Supervised Learning from Multi-View Observation」这篇论文中,谷歌的研究者提出了一种从观察中学习世界的新方法。雷锋字幕组本期译制视频多角度展示了机器人仅仅通过观看视频,就能在无人监督的情况下,模拟视频动作的全过程。

除了视频演示之外,谷歌大脑并未对机器人系统提供监督学习。他们将这种方法运用于各种不同的任务,以此来训练真实和虚拟机器人。例如,倒水任务,放碟任务,和姿势模仿任务。

第一步

通过视频的分解镜头来学习,将时间作为监督信号,发现视频的不同属性。这组嵌入向量经由一组非结构化和未标记的视频训练,里面含有和任务相关的有效动作,也有一些随机行为,来体现真实世界中的各种可能状态。


模型使用triplet loss误差函数,基于同一帧的多视角观察数据来训练多视角下同时出现的帧,在嵌入空间中互相关联。当然也可以考虑一个时间对比模型,只根据单一视角来训练。这一次,有效帧在锚点的一定范围内随机选定,根据有效范围计算边际范围。无效范围是在边际范围外随机选定。模型和之前一样进行训练。
第二步

通过强化学习来学习规则。基于TCN嵌入,根据第三方的真人示范来构造奖励函数。机械臂起初尝试一些随机动作,然后学会反复进行这些动作,就可以产生最高奖励的控制步骤,最后达成重现视频任务的效果。

模型在仅仅经历了9次迭代后就成功收敛,大约相当于现实世界15分钟的训练。同样地,在移碟任务中,机器人最初尝试随机运动,然后学会成功拿起和移动一个盘子。

论文原址:

https://sermanet.github.io/tcn/

相关文章:

看一遍人类动作就能模仿,能理解语义的谷歌机器人登上无监督学习的新高度

————— 新人福利 —————

关注AI 科技评论,回复 1 获取

【数百 G 神经网络 / AI / 大数据资源,教程,论文】


—————  AI 科技评论招人了  —————

AI 科技评论期待你的加入,和我们一起见证未来!

现诚招学术编辑、学术兼职、学术外翻

详情请点击招聘启事


—————  给爱学习的你的福利  —————

Fintech 年终思想盛宴

28 天『AI+金融』学习特惠

跟着民生技术总监、前瑞银大牛、四大行一线操盘手们一起充电

区块链、智能投顾、CCF ADL 智能商业课等都参与特惠

与大咖们碰撞思维

扫码或点击阅读原文了解活动详情

————————————————————

登录查看更多
0

相关内容

【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
26+阅读 · 2020年5月7日
【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
24+阅读 · 2020年4月7日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
29+阅读 · 2020年4月6日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
36+阅读 · 2019年12月15日
【强化学习】深度强化学习初学者指南
专知会员服务
182+阅读 · 2019年12月14日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
26+阅读 · 2019年11月19日
已删除
将门创投
11+阅读 · 2019年8月13日
CVPR2019 | 6D目标姿态估计,李飞飞等提出DenseFusion
计算机视觉life
4+阅读 · 2019年4月4日
6D目标姿态估计,李飞飞夫妇等提出DenseFusion
机器之心
9+阅读 · 2019年1月17日
Grasp2Vec:通过自我监督式抓取学习物体表征
谷歌开发者
9+阅读 · 2019年1月2日
视频 | 介绍卷积神经网络和图像识别(上)
AI科技评论
3+阅读 · 2018年2月27日
Phrase-Based & Neural Unsupervised Machine Translation
Arxiv
3+阅读 · 2018年6月1日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
8+阅读 · 2018年1月25日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
CVPR2019 | 6D目标姿态估计,李飞飞等提出DenseFusion
计算机视觉life
4+阅读 · 2019年4月4日
6D目标姿态估计,李飞飞夫妇等提出DenseFusion
机器之心
9+阅读 · 2019年1月17日
Grasp2Vec:通过自我监督式抓取学习物体表征
谷歌开发者
9+阅读 · 2019年1月2日
视频 | 介绍卷积神经网络和图像识别(上)
AI科技评论
3+阅读 · 2018年2月27日
Top
微信扫码咨询专知VIP会员