从相机标定到SLAM,极简三维视觉六小时课程视频(附PPT)

2019 年 5 月 29 日 CVer

点击上方“CVer”,选择加"星标"或“置顶”

重磅干货,第一时间送达

本文转载自:机器之心

参与:李亚洲、路

谭平教授是加拿大西蒙弗雷泽大学副教授。不久前他与浙江大学合作了一系列三维视觉课程,内容涵盖相机标定、多视几何等多个方面。机器之心简要介绍了该系列课程,希望能够对读者学习三维视觉技术有所帮助。

课程内容简介


任何把相机连接到计算机的工作都不能忽视三维视觉。近年来,视觉 SLAM 技术发展势头迅猛,AR/VR、无人机、机器人、自动驾驶方面的公司都在大量招聘了解这方面技术的人,但熟悉该领域的人才却非常稀缺。


谭平教授表示,2016 年他在北京筛选了近 200 份简历,最后只发出去两个 SLAM算法岗的 offer。许多人只是用过开源代码,有的对代码做过一些定制化,但对算法的原理了解很少。比如,很少有人能说清楚为什么 ORB SLAM 需要两种不同的初始化方式,也没有多少人能讲清楚旋转矩阵的参数化方式。


因此,谭平教授借在浙江大学讲课的机会,把三维视觉部分的课程录像发布在网络上,同时也共享了讲课的 PPT。


该课程一共是三周的课时,时长约六小时。内容涵盖相机标定、多视几何、structure-from-motion、SLAM 等方面。课程适合初学者或是想回顾基础知识的同学。



  • 视频链接:http://list.youku.com/albumlist/show/id_52188378.html

  • PPT 资源链接:https://pan.baidu.com/s/1w_ucOJBou-Fi0Li7H_zaaw 

  • 提取码:oomy


下面我们将简单介绍其中的一节课 SLAM。


SLAM 技术


SLAM 的全称是 Simultaneous Localization And Mapping,是一种帮助机器人实现定位与地图构建功能的方案或技术。它早期用于军事核潜艇中的海底定位,现在广泛应用于机器人、无人机、自动驾驶、VR 和 AR 领域。


谭平教授主要从三部分介绍 SLAM 技术:基于激光雷达的 SLAM(LiDAR SLAM)、视觉 SLAM(Visual SLAM),以及提升稳健性的技术(Robustness Techniques)。谭教授希望首先通过 LiDAR SLAM 的讲解带大家了解 SLAM 的基础模块,然后了解如何用视觉方法实现这些基础模块,即实现 Visual SLAM,最后介绍 Visual SLAM 里面用于提升稳健性的常用技术。

谭平教授首先简要介绍了 SLAM 的基础概念、视觉 SLAM 的 demo 及应用场景。之后以 2D LiDAR SLAM 为例,介绍了 SLAM 中的基础模块。



此外,谭平教授还介绍了 LiDAR SLAM 和 Visual SLAM 的基础架构。



这节课的第二部分介绍了 Visual SLAM,主要探讨了 Visual SLAM by SfM(SfM 在前一节课中已经详细介绍过)、Key‐frame based VisualSLAM、Parallel Tracking and Mapping (PTAM)。其中重点介绍了 PTAM 的原理和具体步骤。



在这节课的第三部分,谭教授讲解了 Re‐localization、解决 Drifting 问题的 Loop Closure 等提升稳健性的技术。视觉 SLAM 面临很多挑战,因此需要这些高级功能来提升它的稳健性。



最后,谭教授简要回顾了视觉 SLAM 的历史,感兴趣的同学可查看课件中总结的研究。



讲师简介



谭平博士是加拿大西蒙弗雷泽大学 (SFU) 副教授,在此之前是新加坡国立大学 (NUS) 副教授。谭博士于 2007 年从香港科技大学获得博士学位,一直从事计算机视觉,特别是三维重建、视觉 SLAM 方面的研究工作。他是 IJCV、CGF、MVA 等学术杂志的副主编,并担任计算机视觉、图形学、机器人方面的学术会议领域主席,包括 CVPR 领域主席,SIGGRAPH、SIGGRAPH Asia 的程序委员,IROS 的副主编。


CVer-SLAM学术交流群


扫码添加CVer助手,可申请加入CVer-SLAM交流群。一定要备注:SLAM+地点+学校/公司+昵称(如SLAM+上海+上交+卡卡),不根据格式申请,一律不通过。

▲长按加群


这么硬的分享,麻烦给我一个在在看


▲长按关注我们

麻烦给我一个在看

登录查看更多
0

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
最新《高级深度学习》课程, 慕尼黑工业大学
专知会员服务
77+阅读 · 2020年6月20日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
【哈佛《CS50 Python人工智能入门》课程 (2020)】
专知会员服务
111+阅读 · 2020年4月12日
【斯坦福新课】CS234:强化学习,附课程PPT下载
专知会员服务
118+阅读 · 2020年1月15日
专知会员服务
86+阅读 · 2019年12月13日
【泡泡图灵智库】Visual SLAM: 为什么要用BA(ICRA)
泡泡机器人SLAM
50+阅读 · 2019年7月11日
如何系统学习视觉惯性里程计(VIO)?
计算机视觉life
17+阅读 · 2019年5月12日
SLAM中VIO的优势及入门姿势
计算机视觉life
87+阅读 · 2019年5月7日
如何从零开始系统化学习视觉SLAM?
计算机视觉life
21+阅读 · 2019年4月13日
激光slam导航方案凭什么更被各大厂家青睐?
计算机视觉life
15+阅读 · 2019年1月25日
从零开始一起学习SLAM | 学习SLAM到底需要学什么?
计算机视觉life
8+阅读 · 2018年9月9日
实时SLAM的未来以及深度学习与SLAM的比较
无人机
8+阅读 · 2017年8月20日
视觉里程计:特征点法之全面梳理
计算机视觉life
12+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2020年3月16日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关VIP内容
最新《高级深度学习》课程, 慕尼黑工业大学
专知会员服务
77+阅读 · 2020年6月20日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
【哈佛《CS50 Python人工智能入门》课程 (2020)】
专知会员服务
111+阅读 · 2020年4月12日
【斯坦福新课】CS234:强化学习,附课程PPT下载
专知会员服务
118+阅读 · 2020年1月15日
专知会员服务
86+阅读 · 2019年12月13日
相关资讯
【泡泡图灵智库】Visual SLAM: 为什么要用BA(ICRA)
泡泡机器人SLAM
50+阅读 · 2019年7月11日
如何系统学习视觉惯性里程计(VIO)?
计算机视觉life
17+阅读 · 2019年5月12日
SLAM中VIO的优势及入门姿势
计算机视觉life
87+阅读 · 2019年5月7日
如何从零开始系统化学习视觉SLAM?
计算机视觉life
21+阅读 · 2019年4月13日
激光slam导航方案凭什么更被各大厂家青睐?
计算机视觉life
15+阅读 · 2019年1月25日
从零开始一起学习SLAM | 学习SLAM到底需要学什么?
计算机视觉life
8+阅读 · 2018年9月9日
实时SLAM的未来以及深度学习与SLAM的比较
无人机
8+阅读 · 2017年8月20日
视觉里程计:特征点法之全面梳理
计算机视觉life
12+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员