NSR观点 | 模型驱动的深度学习

2017 年 11 月 29 日 知社学术圈 国家科学评论

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

《国家科学评论》(National Science Review,NSR) 最近发表了由西安交通大学数学与统计学院徐宗本院士、孙剑教授撰写的观点文章:Model driven deep learning

(https://doi.org/10.1093/nsr/nwx099)

这篇文章尝试解决深度学习的网络拓扑选择问题,目的是实现可设计、可解释以及结果可预期的深度学习方法。


近年来,深度学习在人工智能领域一系列困难问题上取得了突破性成功应用。例如,用于人脸识别已高于人的正确识别率;用于语音识别与机器翻译已接近达到同声翻译和“讲完稿出”的水平;用于围棋竞赛已达到完胜人类世界冠军的水平;用于一些疾病的诊断巳能与中、高级专业医师水平匹敌。现在,深度学习技术在信息科学各领域已无处不在,并正成为各自领域的标准方法。

尽管深度学习取得重大进展,但人们对人工神经网络拓扑与性能的对应关系仍然缺少理论上的认知,网络拓扑选择目前还是一项工程技术而并没有成为科学。这直接导致了现有深度学习多半是缺少理论基础的启发式方法。设计难、解释难、结果不可预知已成为深度学习公认的缺憾。

模型驱动的深度学习方法

《国家科学评论》最近发表了西安交通大学数学与统计学院徐宗本院士、孙剑教授撰写的“Model driven deep learning的观点文章(https://doi.org/10.1093/nsr/nwx099)。这篇文章尝试解决深度学习的网络拓扑选择问题,目的是实现可设计、可解释以及结果可预期的深度学习方法。文章提出一种模型驱动与数据驱动相结合深度学习方法。众所周知,深度学习是一种标准的数据驱动型方法,它将深度网络作为黑箱依赖于大量数据解决现实问题;而模型驱动方法则是从目标、机理、先验出发首先形成学习的一个代价函数,然后通过极小化代价函数来解决问题。模型驱动方法的最大优点是只要模型足够精确,解的质量可预期甚至能达到最优,而且求解方法是确定的。但模型驱动方法的缺陷是在应用中难能精确建模,而且对建模的精确性追求通常只能是一种奢望。

模型驱动深度学习方法有效结合了模型驱动和数据驱动方法的优势,文章中给出了模型驱动深度学习的标准流程: (1)根据问题,建立模型族(Family of Models); (2) 根据模型族,设计算法族 (Family of Algorithms)并建立算法族的收敛性理论;(3)将算法族展开(unfold)成深度网络并实施深度学习。

文中还介绍了课题组研究并实践的一系列模型驱动与数据驱动结合的深度等习方法,展现了该方法在解决实际问题上的有效性。

文章信息:

Zongben Xu and Jian Sun

Model driven deep learning

Natl Sci Rev (2017). DOI: 10.1093/nsr/nwx099

https://doi.org/10.1093/nsr/nwx099


扩展阅读
 

NSR综述 | 甲醇制烯烃反应中SAPO-34分子筛催化剂的最先进合成策略

NSR综述 | 肿瘤微酸环境响应性纳米诊疗平台

NSR研究论文 | Angel:一种新型分布式机器学习系统

今日NC: 如何构建固态电池的“离子高铁”? 第一性原理说要结伴而行 !

Adv. Mat.: 新型高性能无铅反铁电陶瓷储能材料

欢迎广大学者供稿,报道最新研究成果投稿、授权、合作事宜请联系

service@scholarset.com 或微信ID: scholarset

回复“目录”或“”,浏览知社更多精华。长按二维码识别,可以关注/进入公众号进行回复。

登录查看更多
0

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
深度学习目标检测方法及其主流框架综述
专知会员服务
147+阅读 · 2020年6月26日
最新《可解释深度学习XDL》2020研究进展综述大全,54页pdf
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
卷积神经网络的概述论文:分析、应用和展望,21页pdf
专知会员服务
90+阅读 · 2020年4月7日
最新《经济学中的强化学习》2020大综述,42页pdf128篇文献
专知会员服务
199+阅读 · 2020年3月6日
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
【知识图谱】从知识工程到知识图谱全面回顾
产业智能官
19+阅读 · 2019年5月31日
【深度学习】深度学习技术发展趋势浅析
产业智能官
11+阅读 · 2019年4月13日
深度学习时代的图模型,清华发文综述图网络
全球人工智能
6+阅读 · 2018年12月24日
展望:模型驱动的深度学习
人工智能学家
12+阅读 · 2018年1月23日
NSR观点| 学习因果关系和基于因果性的学习
知社学术圈
17+阅读 · 2018年1月7日
人工智能,机器学习和深度学习之间的差异是什么?
大数据技术
6+阅读 · 2017年11月22日
观点|元学习:实现通用人工智能的关键!
AI科技评论
8+阅读 · 2017年8月21日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2020年2月6日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
10+阅读 · 2019年2月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
15+阅读 · 2018年4月3日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
深度学习目标检测方法及其主流框架综述
专知会员服务
147+阅读 · 2020年6月26日
最新《可解释深度学习XDL》2020研究进展综述大全,54页pdf
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
卷积神经网络的概述论文:分析、应用和展望,21页pdf
专知会员服务
90+阅读 · 2020年4月7日
最新《经济学中的强化学习》2020大综述,42页pdf128篇文献
专知会员服务
199+阅读 · 2020年3月6日
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
【知识图谱】从知识工程到知识图谱全面回顾
产业智能官
19+阅读 · 2019年5月31日
【深度学习】深度学习技术发展趋势浅析
产业智能官
11+阅读 · 2019年4月13日
深度学习时代的图模型,清华发文综述图网络
全球人工智能
6+阅读 · 2018年12月24日
展望:模型驱动的深度学习
人工智能学家
12+阅读 · 2018年1月23日
NSR观点| 学习因果关系和基于因果性的学习
知社学术圈
17+阅读 · 2018年1月7日
人工智能,机器学习和深度学习之间的差异是什么?
大数据技术
6+阅读 · 2017年11月22日
观点|元学习:实现通用人工智能的关键!
AI科技评论
8+阅读 · 2017年8月21日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2020年2月6日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
10+阅读 · 2019年2月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
15+阅读 · 2018年4月3日
Arxiv
12+阅读 · 2018年1月28日
Top
微信扫码咨询专知VIP会员