MIT科学家Dimitri P. Bertsekas最新《强化学习与最优控制》2021ASU课程,(附书稿PDF&讲义)

2021 年 1 月 17 日 专知

【导读】MIT科学家Dimitri P. Bertsekas在ASU开设了2021《强化学习》课程,讲述了强化学习一系列主题。Dimitri 的专著《强化学习与最优控制》,是一本探讨人工智能与最优控制的共同边界的著作。




地址:

http://web.mit.edu/dimitrib/www/RLbook.html


作者Dimitri P. Bertsekas教授,1942年出生于希腊雅典,美国工程院院士,麻省理工大学电子工程及计算机科学教授。Bertsekas教授因其在算法优化与控制方面以及应用概率论方面编写了多达16本专著而闻名于世。他也是CiteSeer搜索引擎学术数据库中被引用率最高的100位计算机科学作者之一。Bertsekas教授还是Athena Scientific出版社的联合创始人。


讲义稿:





《强化学习与最优控制》书籍



本书的目的是考虑大型和具有挑战性的多阶段决策问题,这些问题可以通过动态规划和最优控制从原则上解决,但它们的精确解在计算上是难以解决的。我们讨论了依靠近似来产生性能良好的次优策略(suboptimal policies)的求解方法。这些方法统称为强化学习(reinforcement learning),也包括近似动态规划(approximate dynamic programming)和神经动态规划( neuro-dynamic programming)等替代名称。


我们的学科从最优控制和人工智能的思想相互作用中获益良多。本专著的目的之一是探索这两个领域之间的共同边界,并形成一个可以在任一领域具有背景的人员都可以访问的桥梁。


这本书的数学风格与作者的动态规划书和神经动态规划专著略有不同。我们更多地依赖于直观的解释,而不是基于证据的洞察力。在附录中,我们还对有限和无限视野动态规划理论和一些基本的近似方法作了严格的简要介绍。为此,我们需要一个适度的数学背景:微积分、初等概率和矩阵向量代数等。


实践证明这本书中的方法是有效的,最近在国际象棋和围棋中取得的惊人成就就是一个很好的证明。然而,在广泛的问题中,它们的性能可能不太可靠。这反映了该领域的技术现状:没有任何方法能够保证对所有甚至大多数问题都有效,但有足够的方法来尝试某个具有挑战性的问题,并有合理的机会使其中一个或多个问题最终获得成功。因此,我们的目标是提供一系列基于合理原则的方法,并为其属性提供直觉,即使这些属性不包括可靠的性能保证。希望通过对这些方法及其变体的充分探索,读者将能够充分解决他/她自己的问题。




课程讲义课件:



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“RLOC” 可以获取MIT科学家Dimitri P. Bertsekas最新《强化学习与最优控制》2021ASU课程,(附书稿PDF&讲义)专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
3

相关内容

Dimitri P. Bertsekas教授,1942年出生于希腊雅典,美国工程院院士,麻省理工大学电子工程及计算机科学教授。Bertsekas教授因其在算法优化与控制方面以及应用概率论方面编写了多达16本专著而闻名于世。他也是CiteSeer搜索引擎学术数据库中被引用率最高的100位计算机科学作者之一。Bertsekas教授还是Athena Scientific出版社的联合创始人。
专知会员服务
41+阅读 · 2021年4月2日
【斯坦福2021新书】决策算法,694页pdf阐述不确定性决策
专知会员服务
255+阅读 · 2021年1月27日
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
103+阅读 · 2020年3月2日
【斯坦福新课】CS234:强化学习,附课程PPT下载
专知会员服务
119+阅读 · 2020年1月15日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
11节麻省理工学院的通用人工智能课程大放送
全球人工智能
8+阅读 · 2018年2月6日
资源 | CMU统计机器学习2017春季课程:研究生水平
机器之心
14+阅读 · 2017年10月30日
干货|MIT线性代数课程精细笔记3
算法与数学之美
3+阅读 · 2017年9月6日
Arxiv
15+阅读 · 2019年9月30日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
22+阅读 · 2018年8月30日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
VIP会员
Top
微信扫码咨询专知VIP会员