[1] https://www.kesci.com/home/competition/5e535a612537a0002ca864ac/content/
[2] Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6154-6162).
[3] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125).
[4] Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., ... & Loy, C. C. (2019). Hybrid task cascade for instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4974-4983).
[5] Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., ... & Zhang, Z. (2019). MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155.
[6] Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra r-cnn: Towards balanced learning for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 821-830).
[7] Zhang, Z., He, T., Zhang, H., Zhang, Z., Xie, J., & Li, M. (2019). Bag of freebies for training object detection neural networks. arXiv preprint arXiv:1902.04103.
[8]https://baijiahao.baidu.com/s?id=1652911649267060207&wfr=spider&for=pc
[9] Chen X , Lu Y , Wu Z , et al. Reveal of Domain Effect: How Visual Restoration Contributes to Object Detection in Aquatic Scenes[J]. 2020.
[10] Wang, Z., Liu, C., Wang, S., Tang, T., Tao, Y., Yang, C., ... & Fan, X. (2020). UDD: An Underwater Open-sea Farm Object Detection Dataset for Underwater Robot Picking. arXiv preprint arXiv:2003.01446.
[11] Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. In ACM SIGGRAPH 2003 Papers (pp. 313-318).
[12] https://blog.csdn.net/u014485485/article/details/89481501
[13] Solovyev, R., & Wang, W. (2019). Weighted Boxes Fusion: ensembling boxes for object detection models. arXiv preprint arXiv:1910.13302.
[14] https://github.com/ZFTurbo/Weighted-Boxes-Fusion
[15] Wang J , Chen K , Yang S , et al. Region Proposal by Guided Anchoring[J]. 2019.
重磅!CVer-目标检测 微信交流群已成立
扫码添加CVer助手,可申请加入CVer-目标检测 微信交流群,目前已汇集3800人!涵盖2D/3D目标检测、小目标检测、遥感目标检测等。互相交流,一起进步!
同时也可申请加入CVer大群和细分方向技术群,细分方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲长按加群
▲长按关注我们
麻烦给我一个在看!