每天一分钟,带你读遍机器人顶级会议文章
标题:Sequence searching with CNN features for robust and fast visual place recognition
作者:Dongdong Bai,Chaoqu Wang,Bo Zhang,Xiaodong Yi,Xuejun Yang
来源:Computers & Graphics 70 (2018) 270–280
播音员:清蒸鱼
编译: 杨小育
欢迎个人转发朋友圈;其他机构或自媒体如需转载,后台留言申请授权
摘要
本文的主要目的是实现一种鲁棒的地点识别算法,主要针对同时视角和环境变化的情况,并具备令人满意的计算效率。在本文中,我们通过使用最先进的深度学习技术来生成健壮的图像特征表示和开发SeqCNNSLAM,从而显著提高了SeqSLAM算法的视点不变性。实验结果表明,在大多数情况下SeqCNNSLAM优于现有的地点识别系统,例如,当精度维持在100%时,SeqCNNSLAM获得的最大召回比SeqSLAM高50%(该对比试验基于Norland数据集,同时条件变化和12.5%视点变化)。此外,我们开发了一种名为A-SeqCNNSLAM的加速方法,利用相邻图像匹配图像之间的位置关系来减少当前图像的匹配范围。实验结果表明,当最小精度降低5%时,加速度达到5倍。最后,为了增加A-SeqCNNSLAM在新环境中的适应性,我们设计了O-SeqCNNSLAM来进行A-SeqCNNSLAM的在线参数调整。
图 1 AlexNet模型的架构
Abstract
The primary purpose of this paper is to realize robust place recognition algorithms towards simultane- ous viewpoint and condition changes, and provide satisfactory computational efficiency. In this paper, we significantly improve the viewpoint invariance of the SeqSLAM algorithm by using state-of-the-art deep learning techniques to generate robust feature representations of images and develop the SeqCNNSLAM . Experimental results show that SeqCNNSLAM outperforms state-of-the-art place recognition systems in most cases, such as, when precision is maintained at 100%, the maximum recall obtained by SeqCNNSLAM is 50% higher than SeqSLAM on the Norland dataset with simultaneous condition change and 12.5% view- point change. Besides, we develop an acceleration method called A-SeqCNNSLAM , which exploits the lo- cation relationship between the matching images of adjacent images to reduce the matching range of the current image. Experimental results demonstrate that an acceleration of ∼5 times is achieved with min- imal accuracy degradation of ∼5%. Finally, to enable A-SeqCNNSLAM adaptability in new environments, O-SeqCNNSLAM is devised for the online parameter adjustment in A-SeqCNNSLAM.
如果你对本文感兴趣,想要下载完整文章进行阅读,可以关注【泡泡机器人SLAM】公众号。
点击阅读原文,即可获取本文下载链接。
欢迎来到泡泡论坛,这里有大牛为你解答关于SLAM的任何疑惑。
有想问的问题,或者想刷帖回答问题,泡泡论坛欢迎你!
泡泡网站:www.paopaorobot.org
泡泡论坛:http://paopaorobot.org/forums/
泡泡机器人SLAM的原创内容均由泡泡机器人的成员花费大量心血制作而成,希望大家珍惜我们的劳动成果,转载请务必注明出自【泡泡机器人SLAM】微信公众号,否则侵权必究!同时,我们也欢迎各位转载到自己的朋友圈,让更多的人能进入到SLAM这个领域中,让我们共同为推进中国的SLAM事业而努力!
商业合作及转载请联系liufuqiang_robot@hotmail.com