写论文是一件「痛并快乐着」的事情。快乐的是可以将自己的研究公之于众,痛苦的是有大段大段的文本内容需要完成。特别是摘要、引言、结论,需要不断重复说明论文的主要研究、观点和贡献。现在,这样的工作可以依赖 AI 完成了。Element AI 的研究者们提出了一种新的模型,使用 Transformer 架构,自动地生成论文的摘要。AI 攒论文的进程又往前走了一步。
结果与分析 数据集研究者实验了四个不同的大规模长文本摘要数据集:arXiv、PubMed(Cohan et al. 2018)、 bigPatent(Sharma, Li, and Wang 2019)、Newsroom(Grusky, Naaman, and Artzi 2018)。表 1 给出了这些数据集的统计情况。
表 1:本研究中所使用的数据集的统计情况。各列依次为:数据集名称、文档-摘要对数量、文档词数与摘要词数的比、摘要的词数、文档的词数数据预处理抽取模型与摘要模型使用的子词单元都是通过字节对编码(byte pair encoding)(Sennrich, Haddow, and Birch 2015)计算得到的,使用了 40 000 个 replacement。为了解决句子指针网络的内存问题,每篇文章仅保留 300 个句子,每个句子保留 35 个 token。评估研究者使用的评估指标是全长度 F-1 ROUGE 分数(Lin 2004),为此研究中复用了(Co- han et al. 2018)的代码。本研究报告的所有 ROUGE 数值都有 95% 的置信区间,偏差最多为 0.24。结果