本文介绍 ICML2020 中 4 篇与图卷积网络相关的论文。
论文 |
亮点 |
1. 自监督何时有助于图卷积网络? |
首次将自监督纳入 GCNs 的系统探索和评估 |
2. 用于图结构数据的卷积核网络 |
引入了一族多层图核,并在图卷积神经网络和核方法之间建立了新的联系 |
3. 简单和深图卷积网络 |
设计与分析了深图卷积网络 |
4. 常曲率图卷积网络 |
提出图卷积网络到常曲率空间的数学基础概括 |
1. When Does Self-Supervision Help Graph Convolutional Networks?
这项研究首次将自监督纳入 GCNs 的系统探索和评估。
-
首先阐述了
将自监督纳入 GCNs 的三种机制,分析了预训练 & 微调和自训练的局限性,并进而将重点放在多任务学习上。
-
此外提出了
三种新的 GCNs 自监督学习任务,并进行了理论分析和数值比较。
-
研究结果表明,通过合理设计任务形式和合并机制,自监督有利于 GCNs 获得更强的泛化能力和鲁棒性。论文代码可以在 https://github.com/shen-Lab/SS-GCNS 上获得。
2. Convolutional Kernel Networks for Graph-Structured Data
这篇文章引入了一族多层图核,并在图卷积神经网络与核方法之间建立了新的联系。
-
通过将图表示为核特征映射序列(其中每个节点携带关于局部图子结构的信息),文章中的方法
将卷积核网络推广到图结构数据。
-
一方面,核的观点提供了一种无监督的、有表现力的、易于正规化的数据表示,这在样本有限的情况下很有用。
-
另一方面,
提出的模型也可以在大规模数据上进行端到端的训练,从而产生了新型的图卷积神经网络。
实验表明,提出的方法在几个图分类基准上取得了与之相当的性能,同时提供了简单的模型解释。代码可以在 https://github.com/claying/GCKN 中获得。
3. Simple and Deep Graph Convolutional Networks
由于过平滑的问题,目前的大多数图卷积网络(GCNS)模型都很浅。这篇文章研究了深图卷积网络的设计与分析问题。
-
提出了 GCNII 模型,它是对普通 GCN 模型的扩展,使用了两个简单而有效的技术:
初始残差和
单位映射。
-
提供了理论和经验证据,证明这两种技术有效地
缓解了过平滑问题。
实验表明,深度 GCNII 模型在各种半监督和全监督任务上的性能优于最先进的方法。
4. Constant Curvature Graph Convolutional Networks
文章通过
-
引入允许在所有常曲率几何之间进行可微插值的统一形式
-
利用 Gyro 重心坐标来推广经典的欧几里得质心概念
提出图卷积网络(GCN)到常曲率空间的数学基础概括。
当曲率从两边变为零时,提出的模型可以平滑地恢复它们的欧几里得变体。实验证明,对于表现出非欧几里德行为的符号数据,根据它们的离散曲率,提出的方法在节点分类和失真最小化任务上优于欧几里德 GCNs。
往期 ICML 2020 论文推荐:
ICML 2020 | 4 篇推荐系统相关论文
喜欢的话请点 赞👍 + 在看😳 噢!(✪ω✪)
(๑•̀ㅂ•́)و✧ (๑•̀ㅂ•́)و✧ (๑•̀ㅂ•́)و✧