第15届推荐系统年会(ACM RecSys 2021)将于9月27日-10月1日在荷兰阿姆斯特丹举行,大会表明可以以更包容的方式通过线上的形式允许有需要的人参与其中。去年的推荐系统年会论文集锦请参考:围观RecSys2020 | 推荐系统顶会说了啥?。
需要说明的是,本年度的会议论文接收列表(The List of Accepted Papers)已于2021年7月8日在官方网站公布,其中包括49篇常规论文(Regular Papers),3篇复现性论文(Reproducibility Papers),23篇最新成果论文(Late-breaking Results Papers),10篇演示论文(Demo Papers),8篇博士研讨会论文(Doctoral Seminar Papers),14篇工业界演讲(Industry Talks)以及11篇海报(Posters)。官网地址:
通过对本次年会论文以及教程的总结发现,此次大会主要聚焦在了推荐系统中的Bias问题、冷启动问题、对话推荐系统、推荐中的隐私和安全问题、多模态推荐系统、推荐系统的可解释性以及会话推荐等。
大会教程为以下6个:
by Yuta Saito (Cornell University, USA) and Thorsten Joachims (Cornell University, USA)
Multi-Modal Recommender Systems: Hands-On Exploration
by Quoc-Tuan Truong (Singapore Management University, Singapore), Aghiles Salah (Rakuten Institute of Technology, France), and Hady W. Lauw (Singapore Management University, Singapore)
End-to-End Session-Based Recommendation on GPU
Pursuing Privacy in Recommender Systems: the View of Users and Researchers from Regulations to Applications
Conversational Recommendation: Formulation, Methods, and Evaluation
Bias Issues and Solutions in Recommender System
by Jiawei Chen (University of Science and Technology of China, China), Xiang Wang (National University of Singapore, Singapore), Fuli Feng (National University of Singapore, Singapore), and Xiangnan He (University of Science and Technology of China, China)
另外,大会还提供了可复现性的赛道,有3篇论文在此行列,分别涉及到序列推荐中的采样策略、对话推荐系统以及重温NCF与MF,具体的论文名称以及作者如下:
A Case Study on Sampling Strategies for Evaluating Neural Sequential Item Recommendation Models
by Alexander Dallmann, Daniel Zoller, Andreas Hotho (Data Science Chair, University of Würzburg, Würzburg, Germany)
Generation-based vs. Retrieval-based Conversational Recommendation: A User-Centric Comparison
by Ahtsham Manzoor and Dietmar Jannach (University of Klagenfurt, Klagenfurt, Austria)
Reenvisioning the comparison between Neural Collaborative Filtering and Matrix Factorization
by Vito Walter Anelli (Polytechnic University of Bari, Bari, Italy), Alejandro Bellogin (Information Retrieval Group, Universidad Autonoma de Madrid, Madrid, Spain), Tommaso Di Noia Polytechnic (University of Bari, Bari, Italy), and Claudio Pomo (Polytechnic University of Bari, Bari, Italy)
最后,小编为大家收集整理了该年会的论文列表,大家可以对自己感兴趣或者自己研究方向的论文进行更深入的阅读。其中对论文进行总结发现,除了以上列出的大类外,还有一些前沿的研究技术,比如涉及到的强化学习、联邦学习等。
A Payload Optimization Method for Federated Recommender Systems
Farwa K. Khan, Adrian Flanagan, Kuan Eeik Tan, Zareen Alamgir, and Muhammad Ammad-ud-din
Accordion: A Trainable Simulator for Long-Term Interactive Systems
James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara
An Audit of Misinformation Filter Bubbles on YouTube: Bubble Bursting and Recent Behavior Changes
Matus Tomlein, Branislav Pecher, Jakub Simko, Ivan Srba, Robert Moro, Elena Stefancova, Michal Kompan, Andrea Hrckova, Juraj Podrouzek, and Maria Bielikova
Black-Box Attacks on Sequential Recommenders via Data-Free Model Extraction
Zhenrui Yue, Zhankui He, Huimin Zeng, and Julian McAuley
Burst-induced Multi-Armed Bandit for Learning Recommendation
Rodrigo Alves, Antoine Ledent, and Marius Kloft
cDLRM: Look Ahead Caching for Scalable Training of Recommendation Models
Keshav Balasubramanian, Abdulla Alshabanah, Joshua D Choe, and Murali Annavaram
Cold Start Similar Artists Ranking with Gravity-Inspired Graph Autoencoders
Guillaume Salha-Galvan, Romain Hennequin, Benjamin Chapus, Viet-Anh Tran, and Michalis Vazirgiannis
Debiased Explainable Pairwise Ranking from Implicit Feedback
Khalil Damak, Sami Khenissi, and Olfa Nasraoui
Denoising User-aware Memory Network for Recommendation
Zhi Bian, Shaojun Zhou, Hao Fu, Qihong Yang, Zhenqi Sun, Junjie Tang, Guiquan Liu, kaikui liu, and Xiaolong Li
Designing Online Advertisements via Bandit and Reinforcement Learning
Yusuke Narita, Shota Yasui, and Kohei Yata
Evaluating Off-Policy Evaluation: Sensitivity and Robustness
Yuta Saito, Takuma Udagawa, Haruka Kiyohara, Kazuki Mogi, Yusuke Narita, and Kei Tateno
EX3: Explainable Attribute-aware Item-set Recommendations
Yikun Xian, Tong Zhao, Jin Li, Jim Chan, Andrey Kan, Jun Ma, Xin Luna Dong, Christos Faloutsos, George Karypis, S. Muthukrishnan, and Yongfeng Zhang
Fast Multi-Step Critiquing for VAE-based Recommender Systems
Diego Antognini and Boi Faltings
Follow the guides: disentangling human and algorithmic curation in online music consumption
Quentin Villermet, Jérémie Poiroux, Manuel Moussallam, Thomas Louail, and Camille Roth
Hierarchical Latent Relation Modeling for Collaborative Metric Learning
Viet-Anh Tran, Guillaume Salha-Galvan, Romain Hennequin, and Manuel Moussallam
I want to break free! Recommending friends from outside the echo chamber
Antonela Tommasel, Juan Manuel Rodriguez, and Daniela Godoy
Information Interactions in Outcome Prediction: Quantification and Interpretation using Stochastic Block Models
Gaël Poux-Médard, Julien Velcin, and Sabine Loudcher
Large-scale Interactive Conversational Recommendation System
Ali Montazeralghaem, James Allan, and Philip S. Thomas
Large-Scale Modeling of Mobile User Click Behaviors Using Deep Learning
Xin Zhou and Yang Li
Learning An Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems
Danni Peng, Sinno Jialin Pan, Jie Zhang, and Anxiang Zeng
Learning to Represent Human Motives for Goal-directed Web Browsing
Jyun-Yu Jiang, Chia-Jung Lee, Longqi Yang, Bahareh Sarrafzadeh, Brent Hecht, Jaime Teevan
Local Factor Models for Large-Scale Inductive Recommendation
Longqi Yang, Tobias Schnabel, Paul N. Bennett, and Susan Dumais
Matrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All
Florian Wilhelm
Mitigating Confounding Bias in Recommendation via Information Bottleneck
Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike Pan, and Zhong Ming
Negative Interactions for Improved Collaborative-Filtering: Don’t go Deeper, go Higher
Harald Steck and Dawen Liang
Next-item Recommendations in Short Sessions
Wenzhuo Song, Shoujin Wang, Yan Wang, and SHENGSHENG WANG
Online Evaluation Methods for the Causal Effect of Recommendations
Masahiro Sato
Page-level Optimization of e-Commerce Item Recommendations
Chieh Lo, Hongliang Yu, Xin Yin, Krutika Shetty, Changchen He, Kathy Hu, Justin M Platz, Adam Ilardi, and Sriganesh Madhvanath
Partially Observable Reinforcement Learning for Dialog-based Interactive Recommendation
Yaxiong Wu, Craig Macdonald, and Iadh Ounis,
Pessimistic Reward Models for Off-Policy Learning in Recommendation
Olivier Jeunen and Bart Goethals
Privacy Preserving Collaborative Filtering by Distributed Mediation
Alon Ben Horin, and Tamir Tassa
ProtoCF: Prototypical Collaborative Filtering for Few-shot Item Recommendation
Aravind Sankar, Junting Wang, Adit Krishnan, and Hari Sundaram
Recommendation on Live-Streaming Platforms: Dynamic Availability and Repeat Consumption
Jeremie Rappaz, Julian McAuley, and Karl Aberer
Reverse Maximum Inner Product Search: How to efficiently find users who would like to buy my item?
Daichi Amagata and Takahiro Hara
Semi-Supervised Visual Representation Learning for Fashion Compatibility
Ambareesh Revanur, Vijay Kumar, and Deepthi Sharma
“Serving Each User”: Supporting Different Eating Goals Through a Multi-List Recommender Interface
Alain Starke, Edis Asotic, and Christoph Trattner
Shared Neural Item Representations for Completely Cold Start Problem
Ramin Raziperchikolaei, Guannan Liang, and Young-joo Chung
Sparse Feature Factorization for Recommender Systems with Knowledge Graphs
Antonio Ferrara, Vito Walter Anelli, Tommaso Di Noia, and Alberto Carlo Maria Mancino
Stronger Privacy for Federated Collaborative Filtering With Implicit Feedback
Lorenzo Minto, Moritz Haller, Ben Livshits, and Hamed Haddadi
The Dual Echo Chamber: Modeling Social Media Polarization for Interventional Recommending
Tim Donkers and Jürgen Ziegler
The role of preference consistency, defaults and musical expertise in users’ exploration behavior in a genre exploration recommender
Yu Liang and Martijn C. Willemsen
Together is Better: Hybrid Recommendations Combining Graph Embeddings and Contextualized Word Representations
Marco Polignano, Cataldo Musto, Marco de Gemmis, Pasquale Lops, and Giovanni Semeraro
Top-K Contextual Bandits with Equity of Exposure
Olivier Jeunen and Bart Goethals
Tops, Bottoms, and Shoes: Building Capsule Wardrobes via Cross-Attention Tensor Network
Huiyuan Chen, Yusan Lin, Fei Wang, and Hao Yang
Towards Source-Aligned Variational Models for Cross-Domain Recommendation
Aghiles Salah, Thanh Binh Tran, and Hady Lauw
Towards Unified Metrics for Accuracy and Diversity for Recommender Systems
Javier Parapar and Filip Radlinski
Transformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation
Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge
User Bias and Unfairness of Recommendation Algorithms in Beyond-Accuracy Measurements
Ningxia Wang, and Li Chen
Values of Exploration in Recommender Systems
Minmin Chen, Yuyan Wang, Can Xu, Ya Le, mohit sharma, Lee Richardson, and Ed Chi