面向冷启动推荐的异构信息网络元学习 | 作者带你读论文(KDD2020)

2020 年 8 月 9 日 学术头条


题目 Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation
作者:陆元福(北京邮电大学,腾讯微信搜索应用部)、方元(新加坡管理大学)、石川(北京邮电大学)
会议:In Proceedings of the 26nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2020)

背景


推荐系统旨在预测用户对物品的偏好,从而向用户提供其感兴趣的商品,其为用户解决了信息过载问题。但是,新用户或新商品的交互数据往往是非常稀疏的,即导致冷启动问题,冷启动推荐是当前一个非常有挑战的研究问题。

大部分现有工作从数据层面尝试缓解冷启动问题,例如融合额外信息作为用户或商品的特征,或者利用异质信息网络来捕获结构和语义信息。在模型层面,元学习方法为缓解冷启动问题提供了一些新思路。但已有方法通常直接将元学习框架(如MAML)用于冷启动问题,而忽略了推荐中的异质图结构和语义信息。


基于此,我们提出 MetaHIN 模型,以缓解异质信息网络中的冷启动问题。

MetaHIN 在模型层面探索了元学习的能力,同时在数据层面研究了异质信息网络的表达能力。在 MetaHIN 中,我们提出使用多方面的语义上下文来增强每个用户的任务,因此设计了一种新颖的语义增强型任务构建器,用于在元学习场景中捕获异质信息网络中的语义信息。进一步地,我们构建了一个协同适应元学习器该学习器,其既具有语义层面的适应性又具有任务层面的适应性。模型整体框架如下图所示:


语义增强型任务构建器


协同适应元学习器


基础模型


基础模型包括用于生成用户表示的上下文聚合函数,和用于预测评分的偏好预测函数。在上下文聚合中,用户的表示由其上下文聚合而来,即:





协同适应



实验结果

本文在三个冷启动推荐场景和一个传统推荐场景下验证 MetaHIN 的有效性,进行模型分析和参数分析。在三个公开数据集上,实验结果如下表所示。可以看到,我们提出的 MetaHIN 在各个数据集上都有较好的表现。同时,我们还做了一些参数实验,具体结果可参考论文。相关论文及代码已经发布在实验室主页 http://www.shichuan.org 及 https://yuanfulu.github.io 上,欢迎关注。



点击 阅读原文 ,查看更多精彩!
喜欢本篇内容,请 分享、点赞、在看
登录查看更多
11

相关内容

【KDD2020】TAdaNet: 用于图增强元学习的任务自适应网络
专知会员服务
17+阅读 · 2020年9月21日
专知会员服务
47+阅读 · 2020年9月20日
【KDD2020】动态知识图谱的多事件预测
专知会员服务
127+阅读 · 2020年8月30日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
专知会员服务
87+阅读 · 2020年1月20日
【KDD2020】动态知识图谱的多事件预测
专知
88+阅读 · 2020年8月31日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知
9+阅读 · 2020年8月11日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
【基于元学习的推荐系统】5篇相关论文
专知
10+阅读 · 2020年1月20日
KDD 2019论文解读:异构信息网络上的对抗生成学习
云栖社区
22+阅读 · 2019年8月21日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
Top
微信扫码咨询专知VIP会员