随着异构医疗数据和先进的机器学习和数据挖掘技术(特别是深度学习方法)的爆炸式发展,我们现在有机会在医疗保健领域有所作为。在本教程中,我们将介绍最先进的深度学习方法及其实际应用,特别关注于探索不同类型医疗数据的独特特征。上半部分将用于介绍挖掘结构化医疗数据方面的最新进展,包括计算表型、疾病早期检测/风险预测和治疗建议。在下半部分,我们将专注于针对非结构化医疗数据的挑战,并介绍自动化ICD编码的高级深度学习方法、可理解的医学语言翻译、临床试验挖掘和医学报告生成。本教程适用于对将深度学习方法应用到医疗保健领域感兴趣的学生、工程师和研究人员,前提知识很少。本教程将以开放式问题和问答环节结束。