摘要: 深度强化学习是人工智能领域新兴技术之一, 它将深度学习强大的特征提取能力与强化学习的决策能力相结合, 实现从感知输入到决策输出的端到端框架, 具有较强的学习能力且应用广泛. 然而, 已有研究表明深度强化学习存在安全漏洞, 容易受到对抗样本攻击. 为提高深度强化学习的鲁棒性、实现系统的安全应用, 本文针对已有的研究工作, 较全面地综述了深度强化学习方法、对抗攻击、防御方法与安全性分析, 并总结深度强化学习安全领域存在的开放问题以及未来发展的趋势, 旨在为从事相关安全研究与工程应用提供基础.
http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200166
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“DASR” 就可以获取《深度强化学习的攻防与安全性分析综述》专知下载链接