简介 模仿学习,是一种从专家示例中进行学习的方法。这里专家示例指的是由最优(或者次优)策略采集到的状态-动作序列,智能体便是通过模仿专家示例来学习策略。模仿学习主要包含两大类算法框架:行为克隆和对抗式模仿学习。基于这两种算法框架,研究者们提出了各种各样的模仿学习算法,在实验中取得了很好的效果。尽管已经有很多对模仿学习算法的实验研究,关于模仿学习算法的理论分析直到最近才被逐步建立和完善。这些理论结果很好地解释了算法的实验现象,并且对今后的算法设计也有启发。 模仿学习简要教程着重从统计学习理论的角度来介绍模仿学习算法,能使读者对模仿学习算法有深刻的理解,使读者能够通过借助理论来分析已有的实验结果、并且设计更好的算法。

完整版PDF下载方式: (1)登录论坛下载(未注册显示无权限下载)

http://deeprl.neurondance.com/d/382-29

(2) https://www.lamda.nju.edu.cn/xut/Imitation_Learning.pdf

成为VIP会员查看完整内容
63

相关内容

模仿学习是学习尝试模仿专家行为从而获取最佳性能的一系列任务。目前主流方法包括监督式模仿学习、随机混合迭代学习和数据聚合模拟学习等方法。模仿学习(Imitation Learning)背后的原理是是通过隐含地给学习器关于这个世界的先验信息,比如执行、学习人类行为。在模仿学习任务中,智能体(agent)为了学习到策略从而尽可能像人类专家那样执行一种行为,它会寻找一种最佳的方式来使用由该专家示范的训练集(输入-输出对)。当智能体学习人类行为时,虽然我们也需要使用模仿学习,但实时的行为模拟成本会非常高。与之相反,吴恩达提出的学徒学习(Apprenticeship learning)执行的是存粹的贪婪/利用(exploitative)策略,并使用强化学习方法遍历所有的(状态和行为)轨迹(trajectories)来学习近优化策略。它需要极难的计略(maneuvers),而且几乎不可能从未观察到的状态还原。模仿学习能够处理这些未探索到的状态,所以可为自动驾驶这样的许多任务提供更可靠的通用框架。
专知会员服务
41+阅读 · 2021年9月30日
专知会员服务
44+阅读 · 2021年3月8日
元强化学习综述及前沿进展
专知会员服务
62+阅读 · 2021年1月31日
专知会员服务
111+阅读 · 2020年12月31日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
174+阅读 · 2020年2月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
2019必读的十大深度强化学习论文
专知会员服务
59+阅读 · 2020年1月16日
【ICML2021】基于观察的跨域模仿学习
专知
2+阅读 · 2021年8月30日
【DeepMind教程】蒙特卡罗树搜索,60页ppt
专知
2+阅读 · 2021年4月7日
万字长文| 中文知识图谱构建技术以及应用的综述
中国人工智能学会
70+阅读 · 2019年9月9日
深度学习的中文资源,教程推荐!
机器学习研究会
19+阅读 · 2017年11月28日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Towards Fine-grained Causal Reasoning and QA
Arxiv
0+阅读 · 2022年4月15日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
18+阅读 · 2019年1月16日
Knowledge Representation Learning: A Quantitative Review
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年9月30日
专知会员服务
44+阅读 · 2021年3月8日
元强化学习综述及前沿进展
专知会员服务
62+阅读 · 2021年1月31日
专知会员服务
111+阅读 · 2020年12月31日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
174+阅读 · 2020年2月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
2019必读的十大深度强化学习论文
专知会员服务
59+阅读 · 2020年1月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员