图变换器(GTs)已在广泛的任务中展示了其优势。然而,GTs中的自注意力机制忽略了图的归纳偏见,尤其是与结构相关的偏见,这些对图任务至关重要。尽管一些方法利用位置编码和注意力偏差来模拟归纳偏见,但从分析角度来看,它们的效果仍然不是最佳的。因此,本文提出了Gradformer,这是一种创新性地将GT与内在归纳偏见整合的方法,通过在注意力矩阵上应用指数衰减掩码来实现。具体来说,衰减掩码矩阵中的值呈指数级减小,与图结构内减小的节点邻近度相关联。这种设计使Gradformer能够在关注图的局部细节的同时,保持从远处节点捕获信息的能力。此外,Gradformer引入了一个可学习的约束到衰减掩码中,允许不同的注意力头学习不同的衰减掩码。这样的设计使注意力头多样化,使得能够更有效地同化图中的多样化结构信息。在各种基准测试上的广泛实验表明,Gradformer在各种图分类和回归任务中始终优于图神经网络和GT基线模型。此外,Gradformer已被证明是训练深层GT模型的有效方法,在网络加深的情况下,与其他GT模型观察到的显著准确率下降相比,它保持甚至提高了准确率。代码可在 https://github.com/LiuChuang0059/Gradformer 获取。

成为VIP会员查看完整内容
17

相关内容

【ICCV2023】StyleDiffusion:基于扩散模型的可控解缠风格迁移
【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知会员服务
18+阅读 · 2022年11月13日
专知会员服务
15+阅读 · 2021年9月11日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
26+阅读 · 2021年9月9日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
【AAAI2023】用于图对比学习的谱特征增强
专知
18+阅读 · 2022年12月11日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
163+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
424+阅读 · 2023年3月31日
Arxiv
69+阅读 · 2023年3月26日
Arxiv
22+阅读 · 2023年3月17日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关VIP内容
【ICCV2023】StyleDiffusion:基于扩散模型的可控解缠风格迁移
【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知会员服务
18+阅读 · 2022年11月13日
专知会员服务
15+阅读 · 2021年9月11日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
26+阅读 · 2021年9月9日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员