随着指令微调的大型语言模型(LLMs)的发展,对预训练基础模型的对齐带来了越来越多的挑战。现有的对齐策略通常利用多样化且高质量的数据源,但往往忽视了任务本身的内在不确定性,导致所有数据样本的学习权重相同。这可能会导致数据效率和模型性能的次优表现。为此,我们提出了不确定性感知学习(UAL),通过引入样本的不确定性(从更强大的LLMs中获得),以改进不同任务场景下的模型对齐。我们通过一种简单的方式实现UAL,即根据个别样本的不确定性自适应地设置训练的标签平滑值。分析显示,我们的UAL确实促进了特征空间中更好的token聚类,验证了我们的假设。在广泛使用的基准测试上进行的大量实验表明,我们的UAL显著且持续地优于标准的监督微调。值得注意的是,在混合场景中对齐的LLMs在高熵任务(如AlpacaEval排行榜)上平均提高了10.62%,在复杂低熵任务(如MetaMath和GSM8K)上提高了1.81%。

成为VIP会员查看完整内容
23

相关内容

【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
15+阅读 · 2022年12月16日
【ICML2022】基于元语义正则化的介入性对比学习
专知会员服务
20+阅读 · 2022年7月1日
【NeurIPS 2021】实例依赖的偏标记学习
专知会员服务
10+阅读 · 2021年11月28日
专知会员服务
14+阅读 · 2021年9月25日
专知会员服务
15+阅读 · 2021年7月7日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
21+阅读 · 2021年4月11日
基于模型的强化学习综述
专知
31+阅读 · 2022年7月13日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
16+阅读 · 2020年6月26日
初学者的 Keras:实现卷积神经网络
Python程序员
24+阅读 · 2019年9月8日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
158+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
403+阅读 · 2023年3月31日
Arxiv
67+阅读 · 2023年3月26日
Arxiv
141+阅读 · 2023年3月24日
Arxiv
21+阅读 · 2023年3月17日
VIP会员
相关VIP内容
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
15+阅读 · 2022年12月16日
【ICML2022】基于元语义正则化的介入性对比学习
专知会员服务
20+阅读 · 2022年7月1日
【NeurIPS 2021】实例依赖的偏标记学习
专知会员服务
10+阅读 · 2021年11月28日
专知会员服务
14+阅读 · 2021年9月25日
专知会员服务
15+阅读 · 2021年7月7日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
21+阅读 · 2021年4月11日
相关资讯
基于模型的强化学习综述
专知
31+阅读 · 2022年7月13日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
16+阅读 · 2020年6月26日
初学者的 Keras:实现卷积神经网络
Python程序员
24+阅读 · 2019年9月8日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员