有效地从很少到没有数据中学习的能力对于将NLP应用于数据收集成本高或其他困难的任务至关重要。这在学术和实践上都是一个具有挑战性的设置——特别是因为训练中模型通常需要大量标记数据。最近,对未标记数据进行预训练的进展,带来了更好的零样本或少样本学习的潜力(Devlin et al., 2019; Brown et al., 2020)。特别是在过去的一年里,人们进行了大量的研究,利用大规模语言模型更好地从有限的数据中学习。在本教程中,我们的目标是让感兴趣的NLP研究人员了解最新的和正在进行的使用预训练的语言模型进行零样本和少样本学习的技术。此外,我们的目标是向观众揭示新的研究机会,这将有望使我们更接近解决该领域现有的挑战。