【导读】集成学习利用组合多个基础的模型,来得到比任意单个模型都好的性能,它在许多实际应用于数据竞赛中十分重要,比如Kaggle,本文整理了集成学习的一些教程、数据集、论文等学习资源。
书籍和教程
Ensemble Methods: Foundations and Algorithms
https://www.crcpress.com/Ensemble-Methods-Foundations-and-Algorithms/Zhou/p/book/9781439830031
集成学习的经典教材,涵盖 了大多数集成学习的技术,可以说是一本必读的书。
Applications of Supervised and Unsupervised Ensemble Methods
https://www.springer.com/gp/book/9783642039980
这本书介绍了ECAI2008之前的集成技术
Ensemble Machine Learning: Methods and Applications
https://link.springer.com/book/10.1007%2F978-1-4419-9326-7
这本书的优势是在上述基础上,加入了最新的研究成果
Data Mining and Knowledge Discovery Handbook Chapter 45 (Ensemble Methods for Classifiers):
https://link.springer.com/chapter/10.1007/0-387-25465-X_45
这个章节详细介绍了集成学习中的boosting与bagging
Outlier Ensembles: An Introduction
https://www.springer.com/gp/book/9783319547640
介绍了集成学习中离群点的处理
On the Power of Ensemble: Supervised and Unsupervised Methods Reconciled
https://cse.buffalo.edu/~jing/sdm10ensemble.htm
一篇集成学习的综述
课程、视频
Coursera:How to Win a Data Science Competition: Learn from Top Kagglers
https://www.coursera.org/lecture/competitive-data-science/introduction-into-ensemble-methods-MJKCi
Coursera:Machine Learning: Classification by University of Washington partly covers the topic:
https://www.coursera.org/lecture/ml-classification/ensemble-classifiers-IAous
https://www.coursera.org/lecture/predictive-analytics/ensembles-bagging-boosting-ph2UL
Machine Learning and Data Mining
https://www.youtube.com/watch?v=Yvn3--rIdZg&list=PLaXDtXvwY-oDvedS3f4HW0b4KxqpJ_imw&index=27
工具库
[Python] combo
https://github.com/yzhao062/combo
[Python] pycobra
https://github.com/bhargavvader/pycobra
[Python] DESlib
https://github.com/scikit-learn-contrib/DESlib
论文
Github链接:
https://github.com/yzhao062/awesome-ensemble-learning
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!560+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程