我们AIGC系列专题《“大模型+小样本”快速适配下游场景,“AI+传媒”的效力取决于适配与迭代》将“AI+传媒”的研究框架定义为“通用大模型”+“行业小样本”的技术架构。“AI+传媒”在应用层表现效力优劣的关键取决于通用大模型对垂直应用的适配程度及迭代速度,更进一步理解:
1、“行业小样本”的数据集来自小模型或应用及内容:AI产业链包括上层大模型、中层小模型、下层应用及内容,包括应用及内容直接接入大模型或通过小模型接入大模型两种方式,即“大模型+应用及内容”或“大模型+小模型+应用或内容”,其中具备特定功能的AIGC软件产品我们理解为“小模型”+“应用”的技术范式,本身具备较高质量的AI能力,若接入匹配的多模态大模型,有望实现能力上的质变突破。 2、“行业小样本”的结合方式包括“能力调用”及“能力训练”两层: (1)“能力调用”是指下游垂类场景直接调用通用大模型的通用能力,并基于垂类场景内产生的特性化数据不断提升调用能力在垂类场景内的适配程度。我们认为现阶段下游应用及内容主要采取此类方式接入大模型能力,此类方式可高效快速调用大模型先进能力,在时间上及成本上具备优势。 (2)“能力训练”是指下游垂类场景将通用大模型针对特性化数据集进行再训练,从而形成垂类场景专属大模型。例如彭博社利用自身丰富的金融数据源,基于开源的GPT-3框架再训练,开发出了金融专属大模型BloombergGPT。我们认为未来拥有丰富特性化数据集的下游垂类场景将主要采取此类方式,有助于构筑更强的能力壁垒。围绕我们对“AI+传媒”的研究框架体系,我们后续分别针对“技术层”及“产品/应用层”梳理AIGC研究版图,本篇属于AIGC系列专题中“GPT系列专题之一”,重点梳理ChatGPT基础认知。