In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, emerged as a powerful tool for (supervised) machine learning with graphs and relational data. Here, we give a comprehensive overview of the algorithm's use in a machine learning setting. We discuss the theoretical background, show how to use it for supervised graph- and node classification, discuss recent extensions, and its connection to neural architectures. Moreover, we give an overview of current applications and future directions to stimulate research.
翻译:近年来,基于Weisfeiler-Leman算法的算法和神经结构 — — 以图象形态学问题为名的超光速算法 — — 的算法和神经结构 — — 成为以图表和关联数据进行(受监督的)机器学习的强大工具。在这里,我们全面概述了算法在机器学习环境中的使用情况。我们讨论了理论背景,展示了如何将算法用于受监督的图形和节点分类,讨论了最近的扩展及其与神经结构的联系。此外,我们概述了当前应用以及激励研究的未来方向。