The paper studies distributed binary hypothesis testing over a two-hop network where both the relay and the receiver decide on the hypothesis. Both communication links are subject to expected rate constraints, which differs from the classical assumption of maximum rate constraints. We exactly characterize the set of type-II error exponent pairs at the relay and the receiver when both type-I error probabilities are constrained by the same value $\epsilon>0$. No tradeoff is observed between the two exponents, i.e., one can simultaneously attain maximum type-II error exponents both at the relay and at the receiver. For $\epsilon_1 \neq \epsilon_2$, we present an achievable exponents region, which we obtain with a scheme that applies different versions of a basic two-hop scheme, which is shown to be optimal in previous works under maximum rate constraints. More specifically, the basic two-hop scheme is used in our scheme with two choices of parameters and rates, depending on the transmitter's observed sequence. For $\epsilon_1=\epsilon_2$ a single choice is shown to be sufficient. Numerical simulations indicate that extending to three or more parameter choices is never beneficial.
翻译:纸质研究在二杆网络上分布了二杆假设测试, 即中继器和接收器都决定了假设。 两种通信连接都受到预期利率限制, 这不同于对最高利率限制的典型假设。 我们精确地描述中继器和接收器的第二型出错配对和接收器的一套二型出错配对, 当一型误差概率受相同值的制约时, 两种误差概率都受相同值 $\ epsilon> 0美元的限制。 更具体地说, 我们的方案中使用两种二位差率方案, 其参数和率有两个选择, 取决于传输器所观察到的顺序。 对于 $\ epsilon_ 1\ neq\ neq\ \ epsilon_ 2$, 我们提出了一个可实现的前奏区域, 我们用一个使用不同版本的基本二杆方案获得的二杆方案, 在最高利率限制下, 这在以前的工程中是最佳的。 更具体地说, 基本二杆方案使用两种参数和速率有两个选择,, 取决于发报器所观察到的顺序。 $\ epsilon_ 1\\ epsilslon_ silon_ 2$2$2