Reconfigurable intelligent surfaces (RISs) are anticipated to transform wireless communication in a way that is both economical and energy efficient. Revealing the practical power consumption characteristics of RISs can provide an essential toolkit for the optimal design of RIS-assisted wireless communication systems and energy efficiency performance evaluation. Based on our previous work that modeled the dynamic power consumption of RISs, we henceforth concentrate more on static power consumption. We first divide the RIS hardware into three basic parts: the FPGA control board, the drive circuits, and the RIS unit cells. The first two parts are mainly to be investigated and the last part has been modeled as the dynamic power consumption in the previous work. In this work, the power consumption of the FPGA control board is regarded as a constant value, however, that of the drive circuit is a variant that is affected by the number of control signals and its self-power consumption characteristics. Therefore, we model the power consumption of the drive circuits of various kinds of RISs, i.e., PIN diode-/Varactor diode-/RF switch-based RIS. Finally, the measurement results and typical value of static power consumption are illustrated and discussed.


翻译:重新配置的智能表面(RIS)预计将以节约和节能的方式改造无线通信; 释放RIS的实际电耗特点可以为最佳设计RIS辅助无线通信系统和能源效率绩效评估提供一个基本工具包。 根据我们以前模拟RIS动态电耗的工作,我们今后将更多集中于静态电耗。 我们首先将RIS硬件分为三个基本部分:FPGA控制板、驱动电路和RIS单元细胞。前两个部分主要要调查,最后部分是前一项工作的动态电耗模型。在这项工作中,FPGA控制板的电耗被视为一个不变价值,然而,驱动电路是一种受控制信号数量及其自能耗特征影响的变体。因此,我们将各种RIS的驱动电路的电流的电量消耗量进行模型,即PINdiode/Varactor Diode/RF开关的电流耗量模型。 最后,对PGGGA的测量结果和典型值进行了演示。</s>

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员