Approximation theorists have established best-in-class optimal approximation rates of deep neural networks by utilizing their ability to simultaneously emulate partitions of unity and monomials. Motivated by this, we propose partition of unity networks (POUnets) which incorporate these elements directly into the architecture. Classification architectures of the type used to learn probability measures are used to build a meshfree partition of space, while polynomial spaces with learnable coefficients are associated to each partition. The resulting hp-element-like approximation allows use of a fast least-squares optimizer, and the resulting architecture size need not scale exponentially with spatial dimension, breaking the curse of dimensionality. An abstract approximation result establishes desirable properties to guide network design. Numerical results for two choices of architecture demonstrate that POUnets yield hp-convergence for smooth functions and consistently outperform MLPs for piecewise polynomial functions with large numbers of discontinuities.


翻译:近似理论理论家通过利用它们同时模仿统一和单体的分隔线的能力,确立了深神经网络的最佳最佳近似速率。 我们为此提出将统一网络(POUNIts)分割开来,将这些元素直接纳入结构中。 用于学习概率测量的分类结构用于构建无网格的空间分隔线,而具有可学习系数的多元空间则与每个分区相关。 由此产生的 Hp- 元素相似的近似允许使用快速最小方形优化器, 由此产生的结构大小不需要与空间尺寸成倍地扩大, 打破了维度的诅咒。 抽象的近似结果确立了指导网络设计的理想属性。 两种结构选择的数值结果显示, POUnets 产生光滑功能的hp- convergence, 并持续超过具有大量不连续性的片断的多面函数的成形 MLPs。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年3月17日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员