Real time processing for teamwork action recognition is a challenge, due to complex computational models to achieve high system performance. Hence, this paper proposes a framework based on Graphical Processing Units (GPUs) to achieve a significant speed up in the performance of role based activity recognition of teamwork. The framework can be applied in various fields, especially athletic and military applications. Furthermore, the framework can be customized for many action recognition applications. The paper presents the stages of the framework where GPUs are the main tool for performance improvement. The speedup is achieved by performing video processing and Machine learning algorithms on GPU. Video processing and machine learning algorithms covers all computations involved in our framework. Video processing tasks on involves GPU implementation of Motion detection, segmentation and object tracking algorithms. In addition, our framework is integrated with GPUCV, a GPU version of OpenCV functions. Machine learning tasks are supported under our framework with GPU implementations of Support Vector Machine (SVM) for object classification and feature discretization, Hidden Marcov Model (HMM) for activity recognition phase, and ID3 algorithm for role recognition of team members. The system was tested against UC-Teamwork dataset and speedup of 20X has been achieved on NVidia 9500GT graphics card (32 500MHZ processors).


翻译:由于实现系统高性能的计算模型复杂,团队团队行动识别的实时处理是一项挑战,因为实现系统高性能的计算模型复杂,因此,本文件提议了一个基于图形处理股的框架,以大大加快基于角色的活动对团队团队精神的识别,该框架可以应用于各个领域,特别是体育和军事应用。此外,框架可以针对许多行动识别应用程序进行定制。文件介绍了GPU是改进绩效的主要工具的框架的各个阶段。通过在GPU上进行视频处理和机器学习算法,加快了速度。视频处理和机器学习算法涵盖了我们框架中涉及的所有计算。视频处理任务涉及GPU执行动作检测、分解和对象跟踪算法。此外,我们的框架与GPUCV(OpenCV功能的GPU版本)集成,即OpenCVCV的功能。在我们的框架下支持了机器学习任务,用GPU为对象分类和特征分解工具实施GPU、用于活动识别阶段的隐藏马科夫模型(HMM)和用于团队成员角色识别的ID3算法。视频处理任务涉及GPUCS-MS-S-S-SimGVAx 20S-S-S-S-C-C-S-S-Slex-C-C-C-C-C-C-C-C-C-C-C-SimGVDS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-C-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
SlowFast Networks for Video Recognition
Arxiv
4+阅读 · 2019年4月18日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员